Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sphere drying

Similar materials are available based on potato starch, eg, PaseUi SA2 which claims DE below 3 and has unique properties based on its amylose—amylopectin ratio pecuhar to potato starch. The product contains only 0.1% proteia and 0.06% fat which helps stabilize dried food mixes compounded with it. Another carbohydrate raw material is waxy-maize starch. Maltodextrias of differeat DE values of 6, 10, and 15, usiag waxy-maize starch, are available (Staley Co.). This product, called Stellar, is offered ia several physical forms such as agglomerates and hoUow spheres, and is prepared by acid modification (49). Maltodextrias based oa com starch are offered with DEs of 5, 10, 15, and 18 as powders or agglomerates (Grain Processing Corp.). [Pg.119]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

Two or more soHd catalyst components can be mixed to produce a composite that functions as a supported catalyst. The ingredients may be mixed as wet or dry powders and pressed into tablets, roUed into spheres, or pelletized, and then activated. The promoted potassium ferrite catalysts used to dehydrogenate ethylbenzene in the manufacture of styrene or to dehydrogenate butanes in the manufacture of butenes are examples of catalysts manufactured by pelletization and calcination of physically mixed soHd components. In this case a potassium salt, iron oxide, and other ingredients are mixed, extmded, and calcined to produce the iron oxide-supported potassium ferrite catalyst. [Pg.195]

Contact Drying. Contact drying occurs when wet material contacts a warm surface in an indirect-heat dryer (15—18). A sphere resting on a flat heated surface is a simple model. The heat-transfer mechanisms across the gap between the surface and the sphere are conduction and radiation. Conduction heat transfer is calculated, approximately, by recognizing that the effective conductivity of a gas approaches 0, as the gap width approaches 0. The gas is no longer a continuum and the rarified gas effect is accounted for in a formula that also defines the conduction heat-transfer coefficient ... [Pg.242]

Figure 5 shows conduction heat transfer as a function of the projected radius of a 6-mm diameter sphere. Assuming an accommodation coefficient of 0.8, h 0) = 3370 W/(m -K) the average coefficient for the entire sphere is 72 W/(m -K). This variation in heat transfer over the spherical surface causes extreme non-uniformities in local vaporization rates and if contact time is too long, wet spherical surface near the contact point dries. The temperature profile penetrates the sphere and it becomes a continuum to which Fourier s law of nonsteady-state conduction appfies. [Pg.242]

E] Gas absorption aud desorption from water aud organics plus vaporization of pure liquids for Raschig riugs, saddles, spheres, aud rods, dp = nominal pacldug size, Cp = dry pacldug surface area/volume, = wetted pacldug surface area/volume. Equations are dimensionally consistent, so any set of consistent units can be used. <3 = surface tension, dynes/cm. [Pg.621]

Diatomaceous Silica Filter aids of diatomaceous silica have a dry bulk density of 128 to 320 kg/m (8 to 20 Ib/fU), contain paiiicies mostly smaller than 50 [Lm, and produce a cake with porosity in the range of 0.9 (volume of voids/total filter-cake volume). The high porosity (compared with a porosity of 0.38 for randomly packed uniform spheres and 0.2 to 0.3 for a typical filter cake) is indicative of its filter-aid ability Different methods of processing the crude diatomite result in a series of filter aids having a wide range of permeability. [Pg.1708]

The disadvantages of the suspension process are that about 70% of the volume of the kettle is taken up by water, the need for a drying stage which could cause discolouration by degradation and the need to convert the small spheres formed into a larger shape suitable for handling. Furthermore, the suspension method cannot easily be converted into a continuous process. [Pg.432]

A visible cloud of vapor, 1 m deep, spread for 150 m and was ignited by a car that had stopped on a nearby road 25 minutes after the leak started. The road had been closed by the police, but the driver approached from a side road. The fire flashed back to the sphere, which was surrounded by flames. There was no explosion. The sphere was fitted with water sprays. But the system was designed to deliver only haif the quantity of water normally reeommended (0.2 U.S. gal/ft- min. or 8 L/m min.), and the supply was inadequate. When the fire brigade started to use its hoses, the supply to the spheres ran dry. The firemen seemed to have used most of the available w ater for cooling neighboring spheres to stop the fire from spreading, in the belief that the relief valve would pro-teet the vessel on fire. [Pg.167]

Engelhard s in-situ FCC catalyst technology is mainly based on growing zeolite within the kaolin-based particles as shown in Figure 3-9A. The aqueous solution of various kaolins is spray dried to form micR)spheres. The microspheres are hardened in a high-temperature l,3f)(TF/704°C) calcination process. The NaY zeolite is produced by digestion of the microspheres, which contain metakaolin, and mullite with caustic or sodium silicate. Simultaneously, an active matrix is formed with the microspheres. The crystallized microspheres are filtered and washed prior to ion exchange and any final treatment. [Pg.99]

Because the particles in the accumulation mode are very small (most of them have diameters less than 1 pm when dry), they have very small fall speeds (a 1 /im sphere of unit density has a fall speed of about 10 cm/s). Thus, they are only removed in any quantity by the formation of clouds with subsequent precipitation. [Pg.153]


See other pages where Sphere drying is mentioned: [Pg.265]    [Pg.265]    [Pg.255]    [Pg.265]    [Pg.265]    [Pg.406]    [Pg.990]    [Pg.265]    [Pg.265]    [Pg.255]    [Pg.265]    [Pg.265]    [Pg.406]    [Pg.990]    [Pg.193]    [Pg.846]    [Pg.47]    [Pg.386]    [Pg.439]    [Pg.308]    [Pg.157]    [Pg.194]    [Pg.241]    [Pg.242]    [Pg.1196]    [Pg.1233]    [Pg.1898]    [Pg.49]    [Pg.135]    [Pg.214]    [Pg.559]    [Pg.79]    [Pg.98]    [Pg.34]    [Pg.690]    [Pg.694]    [Pg.157]    [Pg.158]    [Pg.515]    [Pg.521]    [Pg.413]    [Pg.190]    [Pg.210]    [Pg.193]    [Pg.846]   
See also in sourсe #XX -- [ Pg.446 , Pg.480 ]




SEARCH



Air drying spheres

Sphere and Cylinder Drying

© 2024 chempedia.info