Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy Hamiltonian

The analogous coupling between the antisyimnetric stretch and bend is forbidden in the H2O Hamiltonian because of syimnetry.) The 2 1 resonance is known as a Femii resonance after its introduction [ ] in molecular spectroscopy. The 2 1 resonance is often very prominent in spectra, especially between stretch and bend modes, which often have approximate 2 1 frequency ratios. The 2 1 couplmg leaves unchanged as a poly ad number the sum ... [Pg.70]

Marquardt R, Quack M, Stohner J and Sutcliffe E 1986 Quantum-mechanical wavepacket dynamics of the CH group in the symmetric top XgCH compounds using effective Hamiltonians from high-resolution spectroscopy J. Chem. Soc., Faraday Trans. 2 82 1173-87... [Pg.1087]

Fehrensen B, Luckhaus D and Quack M 1999 Inversion tunneling in aniline from high resolution infrared spectroscopy and an adiabatic reaction path Hamiltonian approach Z. Phys. Chem., NF 209 1-19... [Pg.1088]

The approach is ideally suited to the study of IVR on fast timescales, which is the most important primary process in imimolecular reactions. The application of high-resolution rovibrational overtone spectroscopy to this problem has been extensively demonstrated. Effective Hamiltonian analyses alone are insufficient, as has been demonstrated by explicit quantum dynamical models based on ab initio theory [95]. The fast IVR characteristic of the CH cliromophore in various molecular environments is probably the most comprehensively studied example of the kind [96] (see chapter A3.13). The importance of this question to chemical kinetics can perhaps best be illustrated with the following examples. The atom recombination reaction... [Pg.2141]

We find it convenient to reverse the historical ordering and to stait with (neatly) exact nonrelativistic vibration-rotation Hamiltonians for triatomic molecules. From the point of view of molecular spectroscopy, the optimal Hamiltonian is that which maximally decouples from each other vibrational and rotational motions (as well different vibrational modes from one another). It is obtained by employing a molecule-bound frame that takes over the rotations of the complete molecule as much as possible. Ideally, the only remaining motion observable in this system would be displacements of the nuclei with respect to one another, that is, molecular vibrations. It is well known, however, that such a program can be realized only approximately by introducing the Eckart conditions [38]. [Pg.502]

The spin-Hamiltonian concept, as proposed by Van Vleck [79], was introduced to EPR spectroscopy by Pryce [50, 74] and others [75, 80, 81]. H. H. Wickmann was the first to simulate paramagnetic Mossbauer spectra [82, 83], and E. Miinck and P. Debmnner published the first computer routine for magnetically split Mossbauer spectra [84] which then became the basis of other simulation packages [85]. Concise introductions to the related modem EPR techniques can be found in the book by Schweiger and Jeschke [86]. Magnetic susceptibility is covered in textbooks on molecular magnetism [87-89]. An introduction to MCD spectroscopy is provided by [90-92]. Various aspects of the analysis of applied-field Mossbauer spectra of paramagnetic systems have been covered by a number of articles and reviews in the past [93-100]. [Pg.121]

A wide variety of ID and wD NMR techniques are available. In many applications of ID NMR spectroscopy, the modification of the spin Hamiltonian plays an essential role. Standard techniques are double resonance for spin decoupling, multipulse techniques, pulsed-field gradients, selective pulsing, sample spinning, etc. Manipulation of the Hamiltonian requires an external perturbation of the system, which may either be time-independent or time-dependent. Time-independent... [Pg.327]

The separation of interactions by 2D spectroscopy can be compared with 2D chromatography. In a onedimensional thin layer or paper chromatogram, the separation of the constituents by elution with a given solvent is often incomplete. Elution with a second solvent in a perpendicular direction may then achieve full separation. In NMR spectroscopy, the choice of two solvents is replaced by the choice of two suitable (effective) Hamiltonians for the evolution and detection periods which allow unique characterisation of each line. [Pg.560]

The paramagnetism of the triplet state can be observed by electron spin resonance spectroscopy. This is perhaps the most reliable means of determining the existence of a triplet state since the ESR signals can be predicted using the following Hamiltonian operator ... [Pg.111]

The real power of ESR spectroscopy for identification of radical structure is based on the interaction of the unpaired electron spin with nuclear spins. This interaction splits the energy levels and often allows determination of the atomic or molecular structure of species containing unpaired electrons. The more complete Hamiltonian is given in Equation (6) for a species containing one unpaired electron, where the summations are over all the nuclei, n, interacting with the electron spin. [Pg.505]

From the point of view of ESR spectroscopy, the distinction between molecules with one unpaired electron and those with more than one lies in the fact that electrons interact with one another these interactions lead to additional terms in the spin Hamiltonian and additional features in the ESR spectrum. The most important electron electron interaction is coulombic repulsion with two unpaired electrons, repulsion leads to the singlet-triplet splitting. As we will see, this effect can be modeled by adding a term, JS St, to the spin Hamiltonian,... [Pg.112]

Note that here bracket does not mean just any round, square, or curly bracket but specifically the symbols and > known as the angle brackets or chevrons. Then ( /l is called a bra and Ivp) is a ket, which is much more than a word play because a bra wavefunction is the complex conjugate of the ket wavefunction (i.e., obtained from the ket by replacing all f s by -i s), and Equation 7.6 implies that in order to obtain the energies of a static molecule we must first let the Hamiltonian work to the right on its ket wavefunction and then take the result to compute the product with the bra wavefunction to the left. In the practice of molecular spectroscopy l /) is commonly a collection, or set, of subwavefunctions l /,) whose subscript index i runs through the number n that is equal to the number of allowed static states of the molecule under study. Equation 7.6 also implies the Dirac function equality... [Pg.114]

How do we know or decide what terms to put in the spin Hamiltonian This is a question of rather far-reaching importance because, since we look at our biomolecular systems through the framework of the spin Hamiltonian, our initial choice very much determines the quality limits of our final results. In other branches of spectroscopy this is sometimes referred to as a sporting activity. We are guided (one would hope) by a fine balance of intellectual inspection, (bio)chemical intuition, and practical considerations. In a more hypochondriacal vein, one could also call this the Achilles heel of the spectroscopy a wrong choice of the model (the spin Hamiltonian) will not lead to an accurate description of nature represented by the paramagnetic biomolecule. [Pg.123]


See other pages where Spectroscopy Hamiltonian is mentioned: [Pg.12]    [Pg.81]    [Pg.1244]    [Pg.1466]    [Pg.441]    [Pg.240]    [Pg.427]    [Pg.380]    [Pg.201]    [Pg.202]    [Pg.550]    [Pg.551]    [Pg.199]    [Pg.301]    [Pg.337]    [Pg.337]    [Pg.264]    [Pg.278]    [Pg.178]    [Pg.173]    [Pg.204]    [Pg.267]    [Pg.67]    [Pg.109]    [Pg.109]    [Pg.110]    [Pg.113]    [Pg.113]    [Pg.123]    [Pg.146]    [Pg.94]    [Pg.140]    [Pg.213]   


SEARCH



Hamiltonians, Mossbauer spectroscopy

Spectroscopy atomic Hamiltonian

© 2024 chempedia.info