Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectra principles

Polavarapu, P. L. (1998). Vibrational Spectra Principles and Applications with Emphasis on Optical Activity. Elsevier, Amsterdam. [Pg.112]

Ya. Ya. Silis, A. M. Kofman, and A. B. Rozenblit, Primary Computer-Aided Processing of Chromatograms and Spectra Principles, Algorithms, and Programs, Zinatne, Riga, Latvia, 1980. [Pg.264]

Polavarapu PL (1998) Vibrational spectra principles and applications with emphasis on optical activity. Elsevier, New York... [Pg.228]

F. J. Devlin, P. J. Stephens, Chem. Phys. Lett., 252, 211 (1996) (b) P. L. Polavarapu, Vibrational Spectra Principles and Applications with Emphasis on Optical Activity,... [Pg.319]

Fokker Bond Tester. An ultrasonic inspection technique commonly used for aircraft structures is based on ultrasonic spectroscopy [2]. Commercially available instruments (bond testers) used for this test operate on the principle of mechanical resonance in a multi-layer structure. A piezoelectric probe shown in Figure 3b, excited by a variable frequency sine signal is placed on the surface of the inspected structure. A frequency spectrum in the range of some tens of kHz to several MHz is acquired by the instrument, see Figure 3a. [Pg.108]

The principle of applying fuzzy logic to matching of spectra is that, given a sample spectrum and a collection of reference spectra, in a first step the reference spectra are unified and fuzzed, i.e., around each characteristic line at a certain wavenumber k, a certain fuzzy interval [/ o - Ak, + Afe] is laid. The resulting fuzzy set is then intersected with the crisp sample spectrum. A membership function analogous to the one in Figure 9-25 is applied. If a line of the sample spec-... [Pg.466]

In contrast to IR and NMR spectroscopy, the principle of mass spectrometry (MS) is based on decomposition and reactions of organic molecules on theii way from the ion source to the detector. Consequently, structure-MS correlation is basically a matter of relating reactions to the signals in a mass spectrum. The chemical structure information contained in mass spectra is difficult to extract because of the complicated relationships between MS data and chemical structures. The aim of spectra evaluation can be either the identification of a compound or the interpretation of spectral data in order to elucidate the chemical structure [78-80],... [Pg.534]

Another feature of the spectrum shown in Figure 10.19 is the narrow width of the absorption lines, which is a consequence of the fixed difference in energy between the ground and excited states. Natural line widths for atomic absorption, which are governed by the uncertainty principle, are approximately 10 nm. Other contributions to broadening increase this line width to approximately 10 nm. [Pg.384]

Neodymium and YAG Lasers. The principle of neodymium and YAG lasers is very similar to that of the ruby laser. Neodymium ions (Nd +) are used in place of Cr + and are often distributed in glass rather than in alumina. The light from the neodymium laser has a wavelength of 1060 nm (1.06 xm) it emits in the infrared region of the electromagnetic spectrum. Yttrium (Y) ions in alumina (A) compose a form of the naturally occurring garnet (G), hence the name, YAG laser. Like the ruby laser, the Nd and YAG lasers operate from three- and four-level excited-state processes. [Pg.134]

In principle, the relaxation spectrum H(r) describes the distribution of relaxation times which characterizes a sample. If such a distribution function can be determined from one type of deformation experiment, it can be used to evaluate the modulus or compliance in experiments involving other modes of deformation. In this sense it embodies the key features of the viscoelastic response of a spectrum. Methods for finding a function H(r) which is compatible with experimental results are discussed in Ferry s Viscoelastic Properties of Polymers. In Sec. 3.12 we shall see how a molecular model for viscoelasticity can be used as a source of information concerning the relaxation spectrum. [Pg.167]

The electromagnetic spectrum is a quantum effect and the width of a spectral feature is traceable to the Heisenberg uncertainty principle. The mechanical spectrum is a classical resonance effect and the width of a feature indicates a range of closely related r values for the model elements. [Pg.183]

Conceptually, the problem of going from the time domain spectra in Figures 3.7(a)-3.9(a) to the frequency domain spectra in Figures 3.7(b)-3.9(b) is straightforward, at least in these cases because we knew the result before we started. Nevertheless, we can still visualize the breaking down of any time domain spectrum, however complex and irregular in appearance, into its component waves, each with its characteristic frequency and amplitude. Although we can visualize it, the process of Fourier transformation which actually carries it out is a mathematically complex operation. The mathematical principles will be discussed only briefly here. [Pg.51]

Section 6.13.2 and illustrated in Figure 6.5. The possible inaccuracies of the method were made clear and it was stressed that these are reduced by obtaining term values near to the dissociation limit. Whether this can be done depends very much on the relative dispositions of the various potential curves in a particular molecule and whether electronic transitions between them are allowed. How many ground state vibrational term values can be obtained from an emission spectrum is determined by the Franck-Condon principle. If r c r" then progressions in emission are very short and few term values result but if r is very different from r", as in the A U — system of carbon monoxide discussed in Section 7.2.5.4, long progressions are observed in emission and a more accurate value of Dq can be obtained. [Pg.252]

These signals in the NOE spectra therefore in principle make it possible to determine which fingerprint in the COSY spectrum comes from a residue adjacent to the one previously identified. For example, in the case of the lac-repressor fragment the specific Ser residue that was identified from the COSY spectrum was shown in the NOE spectrum to interact with a His residue, which in turn interacted with a Val residue. Comparison with the known amino acid sequence revealed that the tripeptide Ser-His-Val occurred only once, for residues 28-30. [Pg.390]

EXAFS is part of the field of X-ray absorption spectroscopy (XAS), in which a number of acronyms abound. An X-ray absorption spectrum contains EXAFS data as well as the X-ray absorption near-edge structure, XANES (alternatively called the near-edge X-ray absorption fine structure, NEXAFS). The combination of XANES (NEXAFS) and EXAFS is commonly referred to as X-ray absorption fine structure, or XAFS. In applications of EXAFS to surface science, the acronym SEXAFS, for surface-EXAFS, is used. The principles and analysis of EXAFS and SEXAFS are the same. See the article following this one for a discussion of SEXAFS and NEXAFS. [Pg.215]

The number of Auger electrons from a particular element emitted from a volume of material under electron bombardment is proportional to the number of atoms of that element in the volume. However it is seldom possible to make a basic, first principles calculation of the concentration of a particular species from an Auger spectrum. Instead, sensitivity factors are used to account for the unknown parameters in the measurement and applied to the signals of all of the species present which are then summed and each divided by the total to calculate the relative atomic percentages present. [Pg.319]

An IBSCA-spectrum (Fig. 4.48) consists of many peaks in the visible range (250-900 nm). Every peak can be related to an process of electron de-excitation of a sputtered particle from a higher to a lower state, for the more dominant peaks to the ground state. There are, in principle, two major types of peak family type I - photons emitted from excited sputtered secondary neutrals and type II - photons emitted from excited sputtered secondary ions (single charged). [Pg.243]

The MRS archival journal. Journal of Materials Research, already mentioned, is another broad-spectrum journal that has worked well, except for its limited polymer content. Here again, the principle of multiple editorship seems to have been an important component of success. [Pg.513]


See other pages where Spectra principles is mentioned: [Pg.58]    [Pg.736]    [Pg.264]    [Pg.721]    [Pg.874]    [Pg.973]    [Pg.1125]    [Pg.1144]    [Pg.1296]    [Pg.1445]    [Pg.1450]    [Pg.1458]    [Pg.1553]    [Pg.1574]    [Pg.2105]    [Pg.206]    [Pg.522]    [Pg.571]    [Pg.772]    [Pg.49]    [Pg.299]    [Pg.469]    [Pg.19]    [Pg.470]    [Pg.388]    [Pg.136]    [Pg.229]    [Pg.416]    [Pg.516]    [Pg.522]    [Pg.178]    [Pg.249]    [Pg.237]    [Pg.92]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Electronic spectra Franck-Condon principle

Fluorescence spectra basic principles

Franck-Condon principle spectrum

Ruby, spectrum principle

Spectrum analyzers principle types

© 2024 chempedia.info