Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specificity in adsorption

There is often considerable specificity in adsorption, one of two fairly closely related dyestuffs being adsorbed, the other not. This is to be expected on the theory that a close correspondence of atomic spacings is required. The specificity is of interest as providing a rather simple parallel to the specific adsorptions on complex biological surfaces such as bacterial cell walls or enzymes (see 17).1... [Pg.251]

It is therefore clear that the emission centers appearing after nitrogen adsorption cannot be displaced W atoms, and that adsorbed nitrogen is directly detectable. For proof that these are atoms rather than molecules we must still rely on the macroscopic flash desorption results, outlined in Section I, B, 3, a. In any event, these observations establish the direct visibility of adsorbed gases in the ion microscope. It should be noted parenthetically that these studies on the (110) also reveal an unusually pronounced structural specificity in adsorption. [Pg.378]

Various functional forms for / have been proposed either as a result of empirical observation or in terms of specific models. A particularly important example of the latter is that known as the Langmuir adsorption equation [2]. By analogy with the derivation for gas adsorption (see Section XVII-3), the Langmuir model assumes the surface to consist of adsorption sites, each having an area a. All adsorbed species interact only with a site and not with each other, and adsorption is thus limited to a monolayer. Related lattice models reduce to the Langmuir model under these assumptions [3,4]. In the case of adsorption from solution, however, it seems more plausible to consider an alternative phrasing of the model. Adsorption is still limited to a monolayer, but this layer is now regarded as an ideal two-dimensional solution of equal-size solute and solvent molecules of area a. Thus lateral interactions, absent in the site picture, cancel out in the ideal solution however, in the first version is a properly of the solid lattice, while in the second it is a properly of the adsorbed species. Both models attribute differences in adsorption behavior entirely to differences in adsorbate-solid interactions. Both present adsorption as a competition between solute and solvent. [Pg.391]

The surface of activated alumina is a complex mixture of aluminum, oxygen, and hydroxyl ions which combine in specific ways to produce both acid and base sites. These sites are the cause of surface activity and so are important in adsorption, chromatographic, and catalytic appHcations. Models have been developed to help explain the evolution of these sites on activation (19). Other ions present on the surface can alter the surface chemistry and this approach is commonly used to manipulate properties for various appHcations. [Pg.155]

In some cases, e.g., the Hg/NaF q interface, Q is charge dependent but concentration independent. Then it is said that there is no specific ionic adsorption. In order to interpret the charge dependence of Q a standard explanation consists in assuming that Q is related to the existence of a solvent monolayer in contact with the wall [16]. From a theoretical point of view this monolayer is postulated as a subsystem coupled with the metal and the solution via electrostatic and non-electrostatic interactions. The specific shape of Q versus a results from the competition between these interactions and the interactions between solvent molecules in the mono-layer. This description of the electrical double layer has been revisited by... [Pg.804]

The alkali promotion of CO dissociation is substrate-specific, in the sense that it has been observed only for a restricted number of substrates where CO does not dissociate on the clean surface, specifically on Na, K, Cs/Ni( 100),38,47,48 Na/Rh49 and K, Na/Al(100).43 This implies that the reactivity of the clean metal surface for CO dissociation plays a dominant role. The alkali induced increase in the heat of CO adsorption (not higher than 60 kJ/mol)50 and the decrease in the activation energy for dissociation of the molecular state (on the order of 30 kJ/mol)51 are usually not sufficient to induce dissociative adsorption of CO on surfaces which strongly favor molecular adsorption (e. g. Pd or Pt). [Pg.42]

Singh P, Singh R, Gale R, Rajeshwar K, DuBow J (1980) Surface charge and specific ion adsorption effects in photoelectrochemical devices. J Appl Phys 51 6286-6291 Bard AJ, Bocarsly AB, Pan ERF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102 3671-3677... [Pg.294]

While in previous ab initio smdies the reconstructed surface was mostly simulated as Au(lll), Feng et al. [2005] have recently performed periodic density functional theory (DFT) calculations on a realistic system in which they used a (5 x 1) unit cell and added an additional atom to the first surface layer. In their calculations, the electrode potential was included by charging the slab and placing a reference electrode (with the counter charge) in the middle of the vacuum region. From the surface free energy curves, which were evaluated on the basis of experimentally measured capacities, they concluded that there is no necessity for specific ion adsorption [Bohnen and Kolb, 1998] and that the positive surface charge alone would be sufficient to lift the reconstmction. [Pg.144]

Chment V, G6mez R, Orts JM, Eehu JM. 2006. Thermodynamic analysis of the temperature dependence fo OH adsorption on Pt(lll) and Pt(lOO) electrodes in acidic media in the absence of specific ion adsorption. J Phys Chem B 110 11344-11351. [Pg.156]

The specific adsorption of bisulfate anions is observed in H2SO4 in both EXAFS and XANES data and, in agreement with voltammetry, is seen to impede oxygen adsorption. Significant specific anion adsorption was found in 6 M TFMSA, but not in 1 M TFMSA [Teliska et al., 2007]. As mentioned above, this specific anion adsorption suppresses OH adsorption (particularly the formation of subsurface O), causes the Pt nanoparticle to become more round, and weakens the Pt-Pt bonding at the smface. The specific anion adsorption becomes site-specific only after lateral interactions from other chemisorbed species such as OH force the anions to adsorb into specific sites. [Pg.283]

In particular, the coupling between the ion transfer and ion adsorption process has serious consequences for the evaluation of the differential capacity or the kinetic parameters from the impedance data [55]. This is the case, e.g., of the interface between two immiscible electrolyte solutions each containing a transferable ion, which adsorbs specifically on both sides of the interface. In general, the separation of the real and the imaginary terms in the complex impedance of such an ITIES is not straightforward, and the interpretation of the impedance in terms of the Randles-type equivalent circuit is not appropriate [54]. More transparent expressions are obtained when the effect of either the potential difference or the ion concentration on the specific ion adsorption is negli-... [Pg.431]

These results have been initially considered as evidence for specific ion adsorption at ITIES [71,72]. Its origin was ascribed to extensive ion pair formation between ions in the aqueous phase and ions in the organic phase [71] [cf. Eq. (20)], or to a penetration into the interfacial region [72]. The former model, which has been considered in this context earlier [60], allows one to interpret the enhanced capacity in terms of Eq. (22). Pereira et al. (74) presented more experimental data demonstrating the effect of electrolytes and proposed a simple model, which is based on the lattice-gas model of the liquid liquid interface [23]. Theoretical calculations showed that ion pairing can lead to an increase in the stored... [Pg.435]

However, the surface tension data that would confirm the specific adsorption of hydrophilic and semihydrophobic ions are lacking. Absence of the specific ion adsorption in these cases is corroborated by the analysis of the surface tension data for the nonpolar-... [Pg.436]

To summarize the description of specificity of adsorption of active radicals on the surface of doped oxide semiconductors, we can conclude that we have a substantial experimental basis to draft the following diagram initially proposed in the study [41] and considered in detail in Chapter 2 ... [Pg.206]

C. H. Giles, T. H. MacEwan, S. N. Natchwa and D. Smith, Studies in Adsorption, Part XI A System of Classification of Solution Adsorption Isotherms and its Use in Diagnosis of Adsorption Mechanism and its Measurement of Specific Surface Area of Solids, J. Chem. Soc., p. 3973,1960. [Pg.222]

The quantity dyl3 In a2 at the potential of the electrocapillary maximum is of basic importance. As the surface charge of the electrode is here equal to zero, the electrostatic effect of the electrode on the ions ceases. Thus, if no specific ion adsorption occurs, this differential quotient is equal to zero and no surface excess of ions is formed at the electrode. This is especially true for ions of the alkali metals and alkaline earths and, of the anions, fluoride at low concentrations and hydroxide. Sulphate, nitrate and perchlorate ions are very weakly surface active. The remaining ions decrease the surface tension at the maximum on the electrocapillary curve to a greater or lesser degree. [Pg.222]

In adsorption processes, contaminated water is contacted with a solid adsorption medium, such as GAC or resin. Based on their equilibrium properties relative to the specific adsorption medium, contaminants will partition from the water to the solid until the system reaches equilibrium.93 The maximum concentration of a given contaminant that can be adsorbed is dependent on... [Pg.1037]

The effects of calcium on polymer-solvent and polymer-surface interactions are dependent on polymer ionicity a maximum intrinsic viscosity and a minimum adsorption density as a function of polymer ionicity are obtained. For xanthan, on the other hand, no influence of specific polymer-calcium interaction is detected either on solution or on adsorption properties, and the increase in adsorption due to calcium addition is mainly due to reduction in electrostatic repulsion. The maximum adsorption density of xanthan is also found to be independent of the nature of the adsorbent surface, and the value is close to that calculated for a closely-packed monolayer of aligned molecules. [Pg.227]


See other pages where Specificity in adsorption is mentioned: [Pg.1342]    [Pg.155]    [Pg.2012]    [Pg.1270]    [Pg.321]    [Pg.1342]    [Pg.155]    [Pg.2012]    [Pg.1270]    [Pg.321]    [Pg.529]    [Pg.2173]    [Pg.96]    [Pg.1175]    [Pg.424]    [Pg.180]    [Pg.290]    [Pg.162]    [Pg.226]    [Pg.317]    [Pg.152]    [Pg.616]    [Pg.31]    [Pg.147]    [Pg.569]    [Pg.423]    [Pg.426]    [Pg.434]    [Pg.42]    [Pg.312]    [Pg.222]    [Pg.703]    [Pg.270]    [Pg.232]    [Pg.171]    [Pg.349]   
See also in sourсe #XX -- [ Pg.273 ]




SEARCH



Adsorption specific

Adsorption specificity

Charge in the Presence of Specific Adsorption

© 2024 chempedia.info