Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specific Reactions

Since 1970 a variety of reaction classification schemes have been developed to allow a more systematic processing of the huge variety of chemical reaction instances (see Chapter III, Section 1 in the Handbook). Reaction classification serves to combine several reaction instances into one reaction type. In this way, the vast number of observed chemical reactions is reduced to a manageable number of reaction types. Apphcation to specific starting materials of the bond and electron changes inherent in such a reaction type then generates a specific reaction instance. [Pg.183]

The two reaction schemes of Figures 3-13 and 3-15 encompass a large proportion of all organic reactions. However, these reactions do not involve a change in the number of bonds at the atoms participating in them. Therefore, when oxidation and reduction reactions that also change the valency of an atom ate to be considered, an additional reaction scheme must be introduced in which free electron pairs are involved. Figure 3-16 shows such a scheme and some specific reaction types. [Pg.191]

Compounds are stored in reaction databases as connection tables (CT) in the same manner as in structure databases (see Section 5.11). Additionally, each compound is assigned information on the reaction center and the role of each compound in the specific reaction scheme (educt, product, etc.) (see Chapter 3). In addition to reaction data, the reaction database also includes bibliographic and factual information (solvent, yield, etc.). All these different data types render the integrated databases quite complex. The retrieval software must be able to recall all these different types of information. [Pg.263]

For each individual mechanistic reaction type, quite an elaborate heuristic decision scheme was built to arrive at rules that allow one to make predictions on specific reaction queries. [Pg.549]

The synchniiuius Iran sit mclhod is com bined with quasi-Newton niethodslo find transition slates. Quasi-.Newlon m etliods are very rohu St an d effieien t in fin din g en ergy in in ini a. Based solely on local information, there is no unique way of moving uphill from eith er rcactari ts or products to reach a specific reaction state, sin ce all direcLion s away from a minimum go uphill. [Pg.309]

The applicability of the two-parameter equation and the constants devised by Brown to electrophilic aromatic substitutions was tested by plotting values of the partial rate factors for a reaction against the appropriate substituent constants. It was maintained that such comparisons yielded satisfactory linear correlations for the results of many electrophilic substitutions, the slopes of the correlations giving the values of the reaction constants. If the existence of linear free energy relationships in electrophilic aromatic substitutions were not in dispute, the above procedure would suffice, and the precision of the correlation would measure the usefulness of the p+cr+ equation. However, a point at issue was whether the effect of a substituent could be represented by a constant, or whether its nature depended on the specific reaction. To investigate the effect of a particular substituent in different reactions, the values for the various reactions of the logarithms of the partial rate factors for the substituent were plotted against the p+ values of the reactions. This procedure should show more readily whether the effect of a substituent depends on the reaction, in which case deviations from a hnear relationship would occur. It was concluded that any variation in substituent effects was random, and not a function of electron demand by the electrophile. ... [Pg.139]

The introduction of additional alkyl groups mostly involves the formation of a bond between a carbanion and a carbon attached to a suitable leaving group. S,.,2-reactions prevail, although radical mechanisms are also possible, especially if organometallic compounds are involved. Since many carbanions and radicals are easily oxidized by oxygen, working under inert gas is advised, until it has been shown for each specific reaction that air has no harmful effect on yields. [Pg.19]

Many stereoselective reactions have been most thoroughly studied with steroid examples because the rigidity of the steroid nucleus prevents conformational changes and because enormous experience with analytical procedures has been gathered with this particular class of natural products (J. Fried, 1972). The name steroids (stereos (gr.) = solid, rigid) has indeed been selected very well, if one considers stereochemical problems. We shall now briefly point to some other interesting, more steroid-specific reactions. [Pg.288]

The foregoing conclusion does not mean that the rate of the reaction proceeds through Table 5.1 at a constant value. The rate of reaction depends on the concentrations of reactive groups, as well as on the reactivities of the latter. Accordingly, the rate of the reaction decreases as the extent of reaction progresses. When the rate law for the reaction is extracted from proper kinetic experiments, specific reactions are found to be characterized by fixed rate constants over a range of n values. [Pg.279]

Oxidation. Hydrogen peroxide is a strong oxidant. Most of its uses and those of its derivatives depend on this property. Hydrogen peroxide oxidizes a wide variety of organic and inorganic compounds, ranging from iodide ions to the various color bodies of unknown stmcture in ceUulosic fibers. The rate of these reactions may be quite slow or so fast that the reaction occurs on a reactive shock wave. The mechanisms of these reactions are varied and dependent on the reductive substrate, the reaction environment, and catalysis. Specific reactions are discussed in a number of general and other references (4,5,32—35). [Pg.472]

C-Allyl Complex Formation. AHyl hahde, aHyl ester, and other aHyl compounds undergo oxidative addition reactions with low atomic valent metal complexes to form TT-aHyl complexes. This is a specific reaction of aHyl compounds. [Pg.76]

Many specific reaction conditions using otiiei alkylene oxides (14) oi combinations of alkylene oxides (15) may be found in tiie patent Hteiatuie. DiaZotlZatlon. The general reactions of o-diamines with an alkali nitrite and an acid with subsequent ting closure are well known. [Pg.237]

Electrolytic reductions generally caimot compete economically with chemical reductions of nitro compounds to amines, but they have been appHed in some specific reactions, such as the preparation of aminophenols (qv) from aromatic nitro compounds. For example, in the presence of sulfuric acid, cathodic reduction of aromatic nitro compounds with a free para-position leads to -aminophenol [123-30-8] hy rearrangement of the intermediate N-phenyl-hydroxylamine [100-65-2] (61). [Pg.263]

Reaction and Transport Interactions. The importance of the various design and operating variables largely depends on relative rates of reaction and transport of reactants to the reaction sites. If transport rates to and from reaction sites are substantially greater than the specific reaction rate at meso-scale reactant concentrations, the overall reaction rate is uncoupled from the transport rates and increasing reactor size has no effect on the apparent reaction rate, the macro-scale reaction rate. When these rates are comparable, they are coupled, that is they affect each other. In these situations, increasing reactor size alters mass- and heat-transport rates and changes the apparent reaction rate. Conversions are underestimated in small reactors and selectivity is affected. Selectivity does not exhibit such consistent impacts and any effects of size on selectivity must be deterrnined experimentally. [Pg.509]

Scale-Up Principles. Key factors affecting scale-up of reactor performance are nature of reaction zones, specific reaction rates, and mass- and heat-transport rates to and from reaction sites. Where considerable uncertainties exist or large quantities of products are needed for market evaluations, intermediate-sized demonstration units between pilot and industrial plants are usehil. Matching overall fluid flow characteristics within the reactor might determine the operative criteria. Ideally, the smaller reactor acts as a volume segment of the larger one. Elow distributions are not markedly influenced by... [Pg.516]

Color can be removed effectively and economically with either alum or ferric sulfate at pH values of 5—6 and 3—4, respectively. The reaction is stoichiometric and is a specific reaction of the coagulant with the color to form an insoluble compound (17). The dosage required may be as high as 100—150 mg/L (380—570 mg/gal). Raw-water colors may be as high as 450—500 units on the APHA color scale. The secondary MCL (maximum contaminant level) for color in the finished water is 15 units, although most municipal treatment plants produce water that seldom exceeds 5 units. [Pg.278]

A number of theories have been put forth to explain the mechanism of polytype formation (30—36), such as the generation of steps by screw dislocations on single-crystal surfaces that could account for the large number of polytypes formed (30,35,36). The growth of crystals via the vapor phase is beheved to occur by surface nucleation and ledge movement by face specific reactions (37). The soHd-state transformation from one polytype to another is beheved to occur by a layer-displacement mechanism (38) caused by nucleation and expansion of stacking faults in close-packed double layers of Si and C. [Pg.464]

There is an enormous volume of Hterature available on the appHcations for supported catalysts. Examples are compiled here based on important synthesis methods and industrial uses. The organization is according to specific reactions and appHcations rather than according to catalyst type. [Pg.197]

Chlorine dioxide gas is a strong oxidizer. The standard reversible potential is determined by the specific reaction chemistry. The standard potential for gaseous CIO2 in aqueous solution reactions where a chloride ion is the product is —1.511 V, but the potential can vary as a function of pH and concentration (26) ... [Pg.481]

The sohd line in Figure 3 represents the potential vs the measured (or the appHed) current density. Measured or appHed current is the current actually measured in an external circuit ie, the amount of external current that must be appHed to the electrode in order to move the potential to each desired point. The corrosion potential and corrosion current density can also be deterrnined from the potential vs measured current behavior, which is referred to as polarization curve rather than an Evans diagram, by extrapolation of either or both the anodic or cathodic portion of the curve. This latter procedure does not require specific knowledge of the equiHbrium potentials, exchange current densities, and Tafel slope values of the specific reactions involved. Thus Evans diagrams, constmcted from information contained in the Hterature, and polarization curves, generated by experimentation, can be used to predict and analyze uniform and other forms of corrosion. Further treatment of these subjects can be found elsewhere (1—3,6,18). [Pg.277]

This study is particularly noteworthy in the evolution of QM-MM studies of enzyme reactions in that a number of technical features have enhanced the accuracy of the technique. First, the authors explicitly optimized the semiempirical parameters for this specific reaction based on extensive studies of model reactions. This approach had also been used with considerable success in QM-MM simultation of the proton transfer between methanol and imidazole in solution. [Pg.230]

Enzymes increase the rate of chemical reactions by decreasing the activation energy of the reactions. This is achieved primarily by the enzyme preferentially binding to the transition state of the substrate. Catalytic groups of the enzyme are required to achieve a specific reaction path for the conversion of substrate to product. [Pg.219]

The catalytic triad consists of the side chains of Asp, His, and Ser close to each other. The Ser residue is reactive and forms a covalent bond with the substrate, thereby providing a specific pathway for the reaction. His has a dual role first, it accepts a proton from Ser to facilitate formation of the covalent bond and, second, it stabilizes the negatively charged transition state. The proton is subsequently transferred to the N atom of the leaving group. Mutations of either of these two residues decrease the catalytic rate by a factor of 10 because they abolish the specific reaction pathway. Asp, by stabilizing the positive charge of His, contributes a rate enhancement of 10. ... [Pg.219]

Varies with specific reaction typically a few nm to hundreds of nm... [Pg.52]


See other pages where Specific Reactions is mentioned: [Pg.29]    [Pg.33]    [Pg.282]    [Pg.782]    [Pg.798]    [Pg.577]    [Pg.67]    [Pg.67]    [Pg.181]    [Pg.269]    [Pg.276]    [Pg.397]    [Pg.84]    [Pg.73]    [Pg.259]    [Pg.509]    [Pg.482]    [Pg.318]    [Pg.487]    [Pg.70]    [Pg.120]    [Pg.234]    [Pg.207]    [Pg.52]    [Pg.647]    [Pg.689]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Reaction specificity

© 2024 chempedia.info