Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specific interface area

On the walls of the cylinders. This region has a small specific interface area and a... [Pg.166]

According to Assumption (4) above, the specific interface area calculated from the Sauter mean diameter of spray droplets, a, is kept constant. Thus, the integral amount of S02 absorbed within the residence time of the gas and droplets in the effective volume of the reactor, t, can be obtained as... [Pg.176]

An important factor for the specific interface area is the deformation of droplets (bubbles), which is generally determined by the dynamic influx caused by turbulent pulsations from the dispersion medium, and/or the ratio of phase rates, as a result of their different densities (gravitation component). The minimal size d of dispersed phase particles undergoing deformation can be, in this case, calculated using the equation which characterises the stability of the interphase boundary. [Pg.55]

Figure 12.16 Specific Interface areas and dimensions determined via scattering experiments. Figure 12.16 Specific Interface areas and dimensions determined via scattering experiments.
While a thermodynamic treatment can be developed entirely in terms of f(P,T), to apply adsorption models, it is highly desirable to know on a per square centimeter basis rather than a per gram basis or, alternatively, to know B, the fraction of surface covered. In both the physical chemistry and the applied chemistry of the solid-gas interface, the specific surface area is thus of extreme importance. [Pg.571]

The fluctuations of the local interfacial position increase the effective area. This increase in area is associated with an increase of free energy Wwhich is proportional to the interfacial tension y. The free energy of a specific interface configuration u(r,) can be described by the capillary wave Hamiltonian ... [Pg.2372]

Much of the difficulty in demonstrating the mechanism of breakaway in a particular case arises from the thinness of the reaction zone and its location at the metal-oxide interface. Workers must consider (a) whether the oxide is cracked or merely recrystallised (b) whether the oxide now results from direct molecular reaction, or whether a barrier layer remains (c) whether the inception of a side reaction (e.g. 2CO - COj + C)" caused failure or (d) whether a new transport process, chemical transport or volatilisation, has become possible. In developing these mechanisms both arguments and experimental technique require considerable sophistication. As a few examples one may cite the use of density and specific surface-area measurements as routine of porosimetry by a variety of methods of optical microscopy, electron microscopy and X-ray diffraction at reaction temperature of tracer, electric field and stress measurements. Excellent metallographic sectioning is taken for granted in this field of research. [Pg.282]

Secondary minerals. As weathering of primary minerals proceeds, ions are released into solution, and new minerals are formed. These new minerals, called secondary minerals, include layer silicate clay minerals, carbonates, phosphates, sulfates and sulfides, different hydroxides and oxyhydroxides of Al, Fe, Mn, Ti, and Si, and non-crystalline minerals such as allophane and imogolite. Secondary minerals, such as the clay minerals, may have a specific surface area in the range of 20-800 m /g and up to 1000 m /g in the case of imogolite (Wada, 1985). Surface area is very important because most chemical reactions in soil are surface reactions occurring at the interface of solids and the soil solution. Layer-silicate clays, oxides, and carbonates are the most widespread secondary minerals. [Pg.166]

Considering that nanoparticles have much higher specific surface areas, in their assembled forms there are large areas of interfaces. One needs to know in detail not only the structures of these interfaces, but also their local chemistries and the effects of segregation and interaction between MBBs and their surroundings. The knowledge of ways to control nanostructure sizes, size distributions, compositions, and assemblies are important aspects of bottom-up nanotechnology [97]. [Pg.231]

OS 10] [R 10] [P 9] The specific interfadal area was varied for a phase-transfer reaction for four amide formations from two amines and two acid chlorides [23[. This was done by filling the solutions in normal test-tubes of varying diameter (1-5 X cm ) and using a micro reactor which had the largest specific interface (45 X cm ). The yields of all foiu reactions are highly and similarly dependent on... [Pg.429]

GL 27] [R 3] ]P 29] By means of sulfite oxidation, the specific interfacial area of the fluid system nitrogen/water was determined at Weber numbers ranging from lO " to 10 [10]. In this range, the interface increases from 4000 m m to 10 000 m m . The data are - with exceptions - in accordance with optically derived analysis of the interface and predictions from calculations. At stiU larger Weber number up to 10, the specific interfacial area increases up to 17 000 m m, which was determined optically. [Pg.649]

One of the most attractive roles of liquid liquid interfaces that we found in solvent extraction kinetics of metal ions is a catalytic effect. Shaking or stirring of the solvent extraction system generates a wide interfacial area or a large specific interfacial area defined as the interfacial area divided by a bulk phase volume. Metal extractants have a molecular structure which has both hydrophilic and hydrophobic groups. Therefore, they have a property of interfacial adsorptivity much like surfactant molecules. Adsorption of extractant at the liquid liquid interface can dramatically facilitate the interfacial com-plexation which has been exploited from our research. [Pg.361]

A high specific interfacial area and a direct spectroscopic observation of the interface were attained by the centrifugal liquid membrane (CLM) method shown in Fig. 2. A two-phase system of about 100/rL in each volume is introduced into a cylindrical glass cell with a diameter of 19 mm. The cell is rotated at a speed of 5000-10,000 rpm. By this procedure, a two-phase liquid membrane with a thickness of 50-100 fim. is produced inside the cell wall which attains the specific interfacial area over 100 cm. UV/VIS spectrometry, spectro-fluorometry, and other spectroscopic methods can be used for the measurement of the interfacial species and its concentration as well as those in the thin bulk phases. This is an excellent method for determining interfacial reaction rates on the order of seconds. [Pg.362]

Example 1. Under the phase separation process, the time dependence of the interface area or the maximum wavevector does not exhibit any specific behavior that could be directly related to the morphological transformations that... [Pg.223]

An understanding of much of aqueous geochemistry requires an accurate description of the water-mineral interface. Water molecules in contact with> or close to, the silicate surface are in a different environment than molecules in bulk water, and it is generally agreed that these adsorbed water molecules have different properties than bulk water. Because this interfacial contact is so important, the adsorbed water has been extensively studied. Specifically, two major questions have been examined 1) how do the properties of surface adsorbed water differ from bulk water, and 2) to what distance is water perturbed by the silicate surface These are difficult questions to answer because the interfacial region normally is a very small portion of the water-mineral system. To increase the proportion of surface to bulk, the expanding clay minerals, with their large specific surface areas, have proved to be useful experimental materials. [Pg.51]


See other pages where Specific interface area is mentioned: [Pg.219]    [Pg.180]    [Pg.176]    [Pg.177]    [Pg.183]    [Pg.263]    [Pg.176]    [Pg.181]    [Pg.1021]    [Pg.287]    [Pg.219]    [Pg.180]    [Pg.176]    [Pg.177]    [Pg.183]    [Pg.263]    [Pg.176]    [Pg.181]    [Pg.1021]    [Pg.287]    [Pg.3]    [Pg.156]    [Pg.407]    [Pg.196]    [Pg.431]    [Pg.56]    [Pg.96]    [Pg.248]    [Pg.450]    [Pg.463]    [Pg.142]    [Pg.1529]    [Pg.1529]    [Pg.108]    [Pg.45]    [Pg.243]    [Pg.38]    [Pg.50]    [Pg.83]    [Pg.215]    [Pg.72]    [Pg.313]   
See also in sourсe #XX -- [ Pg.157 , Pg.176 , Pg.181 , Pg.207 ]




SEARCH



Interface area

Specific area

© 2024 chempedia.info