Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sorbitol acid

Sorbitol acid can be produced in yields close to 100% from glucose via hydrogenation. This makes it very interesting as a chemical for industrial use in the food and nonfood sectors. Every year 350000 tonnes of SBA is manufactured by companies such as Cerestar-Cargill, Roquette, and Tate Lyle. For example, isosorb-ides can be synthesized from SBA via dehydration and can form polymers, which... [Pg.132]

Sorbitol is manufactured by the reduction of glucose in aqueous solution using hydrogen with a nickel catalyst. It is used in the manufacture of ascorbic acid (vitamin C), various surface active agents, foodstuffs, pharmaceuticals, cosmetics, dentifrices, adhesives, polyurethane foams, etc. [Pg.368]

Sorhita.n nd Sorbitol Esters. This group of emulsifiers is formed from the reaction of sorbitan and stearic acid. Sorbitan monostearate is often used in combination with polysorbate in ice cream, imitation dairy products, and baking appHcations (36). [Pg.438]

Polarimetric analysis of sorbitol and mannitol in the presence of each other and of sugars is possible because of their enhanced optical rotation when molybdate complexes are formed and the higher rotation of the mannitol molybdate complex under conditions of low acidity (194). The concentration of a pure solution of sorbitol may be determined by means of the refractometer (195). Mass spectra of trimethylsilyl ethers of sugar alcohols provide unambiguous identification of tetritols, pentitols, and hexitols and permit determination of molecular weight (196). [Pg.52]

Manufacture of vitamin C starts with the conversion of sorbitol to L-sorbose. Sorbitol and xyHtol have been used for parenteral nutrition following severe injury, bums, or surgery (246). An iron—sorbitol—citric acid complex is an intramuscular bematinic (247). Mannitol administered intravenously (248) and isosorbide administered orally (249) are osmotic diuretics. Mannitol hexanitrate and isosorbide dinitrate are antianginal dmgs (see Cardiovascular agents). [Pg.54]

Anhydrosorbitol esters are prepared commercially by direct esterification of sorbitol with a fatty acid at 225—250°C in the presence of an acidic... [Pg.251]

The structure of these products is uncertain and probably depends on pH and concentrations in solution. The hydroxyl or carboxyl or both are bonded to the titanium. It is likely that most, if not all, of these products are oligomeric in nature, containing Ti—O—Ti titanoxane bonds (81). Thek aqueous solutions are stable at acidic or neutral pH. However, at pH ranges above 9.0, the solutions readily hydroly2e to form insoluble hydrated oxides of titanium. The alkaline stabiUty of these complexes can be improved by the addition of a polyol such as glycerol or sorbitol (83). These solutions are useful in the textile, leather (qv), and cosmetics (qv) industries (see Textiles). [Pg.146]

Addition of secondary chelating agents, eg, polyols such as sorbitol or mannitol and the strongly chelating a-hydroxycarboxyhc acids such as citric or oxahc, prevents development of turbidity outside the pH range of 9—11 (115—117). [Pg.148]

Most current industrial vitamin C production is based on the efficient second synthesis developed by Reichstein and Grbssner in 1934 (15). Various attempts to develop a superior, more economical L-ascorbic acid process have been reported since 1934. These approaches, which have met with htde success, ate summarized in Crawford s comprehensive review (46). Currently, all chemical syntheses of vitamin C involve modifications of the Reichstein and Grbssner approach (Fig. 5). In the first step, D-glucose (4) is catalytically (Ni-catalyst) hydrogenated to D-sorbitol (20). Oxidation to L-sotbose (21) occurs microhiologicaRy with The isolated L-sotbose is reacted with acetone and sulfuric acid to yield 2,3 4,6 diacetone-L-sorbose,... [Pg.14]

The apparent acid strength of boric acid is increased both by strong electrolytes that modify the stmcture and activity of the solvent water and by reagents that form complexes with B(OH) 4 and/or polyborate anions. More than one mechanism may be operative when salts of metal ions are involved. In the presence of excess calcium chloride the strength of boric acid becomes comparable to that of carboxyUc acids, and such solutions maybe titrated using strong base to a sharp phenolphthalein end point. Normally titrations of boric acid are carried out following addition of mannitol or sorbitol, which form stable chelate complexes with B(OH) 4 in a manner typical of polyhydroxy compounds. EquiUbria of the type ... [Pg.193]

A series of sorbitol-based nonionic surfactants are used ia foods as water-ia-oil emulsifiers and defoamers. They are produced by reaction of fatty acids with sorbitol. During reaction, cycHc dehydration as well as esterification (primary hydroxyl group) occurs so that the hydrophilic portion is not only sorbitol but also its mono- and dianhydride. The product known as sorbitan monostearate [1338-41 -6] for example, is a mixture of partial stearic and palmitic acid esters (sorbitan monopalmitate [26266-57-9]) of sorbitol, 1,5-anhydro-D-glucitol [154-58-8] 1,4-sorbitan [27299-12-3] and isosorbide [652-67-5]. Sorbitan esters, such as the foregoing and also sorbitan monolaurate [1338-39-2] and sorbitan monooleate [1338-43-8], can be further modified by reaction with ethylene oxide to produce ethoxylated sorbitan esters, also nonionic detergents FDA approved for food use. [Pg.480]

Sorbitol is the most important higher polyol used in direct esterification of fatty acids. Esters of sorbitans and sorbitans modified with ethylene oxide are extensively used as surface-active agents. Interesteritication of fatty acid methyl esters with sucrose yields biodegradable detergents, and with starch yields thermoplastic polymers (36). [Pg.85]

An oral dental riase geaeraHy coasists of water, alcohol, a humectant, an emulsifier, flavor, color, and an active agent. Water is the primary vehicle. The alcohol provides bite and is also a formulation aid. The humectant improves the feel ia the mouth and also prevents locking of the cap to the container between uses glycerin or noncrystaUiziag sorbitol may be satisfactory. The emulsifier is a nonionic type, for example, a polyoxyethylene—polyoxypropylene block copolymer or a polyoxyethylene sorbitan fatty acid ester. Flavors are generally a type of mint or cinnamon. Colors are FD C or D C. [Pg.503]

Surface-Active Agents. Polyol (eg, glycerol, sorbitol, sucrose, and propylene glycol) or poly(ethylene oxide) esters of long-chain fatty acids are nonionic surfactants (qv) used in foods, pharmaceuticals, cosmetics, textiles, cleaning compounds, and many other appHcations (103,104). Those that are most widely used are included in Table 3. [Pg.396]


See other pages where Sorbitol acid is mentioned: [Pg.132]    [Pg.132]    [Pg.368]    [Pg.450]    [Pg.180]    [Pg.148]    [Pg.437]    [Pg.309]    [Pg.346]    [Pg.21]    [Pg.49]    [Pg.49]    [Pg.49]    [Pg.50]    [Pg.50]    [Pg.51]    [Pg.51]    [Pg.51]    [Pg.51]    [Pg.51]    [Pg.51]    [Pg.52]    [Pg.53]    [Pg.54]    [Pg.54]    [Pg.55]    [Pg.289]    [Pg.293]    [Pg.148]    [Pg.164]    [Pg.357]    [Pg.357]    [Pg.476]    [Pg.481]    [Pg.300]   
See also in sourсe #XX -- [ Pg.132 , Pg.133 ]




SEARCH



Adipic acid Sorbitol-containing polyesters

L-Ascorbic acid from D-sorbitol

Sorbitol

Sorbitol Acid (SBA)

Sorbitol boric acid complex

Sorbitol fatty acid esters

Zymomonas mobilis Process for Gluconic Acid and Sorbitol Production

© 2024 chempedia.info