Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent purification method

First-order decay rate constants of transients that are also subject to second-order reactions cannot be determined reliably, even when attempts are made to correct for the observable second-order contributions. A typical example is the triplet state half-life of anthracene in degassed solution, which appears to be somewhere in the range 20 (ts 1 ms on most instruments (the values are reproducible on a given instrument but vary widely between different setups and solvent purification methods). The lifetime of triplet anthracene in solution rises to 25 ms when measures are taken to reduce quenching by diffusional encounters with the parent molecule (self-quenching) with other molecules in the triplet state (triplet triplet annihilation) and with impurity quenchers such as dioxygen.200 Hence lifetimes of transients that are prone to second-order decay contributions, such as long-lived triplet states or radicals, should always be considered as lower limits. [Pg.101]

Nevertheless, they are stable to standard work-up and purification methods. The benzenesulfonyl group can be introduced using base and an aprotic solvent[3] or under phase transfer conditions[4], Table 9.2 gives some representative examples of acylation and sulfonylations. [Pg.92]

Purification. Enzyme purity, expressed in terms of the percent active enzyme protein of total protein, is primarily achieved by the strain selection and fermentation method. In some cases, however, removal of nonactive protein by purification is necessary. The key purification method is selective precipitation of the product or impurities by addition of salt, eg, sodium sulfate, or solvent, eg, ethanol or acetone by heat denaturation or by isoelectric precipitation, ie, pH adjustments. Methods have been introduced to produce crystalline enzyme preparations (24). [Pg.290]

The general purification methods listed for xylene are applicable. p-Xylene can readily be separated from its isomers by crystn from such solvents as MeOH, EtOH, isopropanol, acetone, butanone, toluene, pentane or pentene. It can be further purified by fractional crystn by partial freezing, and stored over sodium wire or molecular sieves Linde type 4A. [Stokes and French J Chem Soc, Faraday Trans 1 76 537 1980.]... [Pg.387]

The most common method of purification of inorganic species is by recrystallisation, usually from water. However, especially with salts of weak acids or of cations other than the alkaline and alkaline earth metals, care must be taken to minimise the effect of hydrolysis. This can be achieved, for example, by recrystallising acetates in the presence of dilute acetic acid. Nevertheless, there are many inorganic chemicals that are too insoluble or are hydrolysed by water so that no general purification method can be given. It is convenient that many inorganic substances have large temperature coefficients for their solubility in water, but in other cases recrystallisation is still possible by partial solvent evaporation. [Pg.389]

Regarding the color, we only see a need for colorless ionic liquids in very specific applications (see above). One easy treatment that often reduces coloration quite impressively, especially of imidazolium ionic liquids, is purification by column chromatography/filtration over silica 60. For this purification method, the ionic liquid is dissolved in a volatile solvent such as CFF2C12. Usually, most of the colored impurities stick to the silica, while the ionic liquid is eluted with the solvent. By repetition of the process several times, a seriously colored ionic liquid can be converted into an almost completely colorless material. [Pg.28]

The caprolactam obtained must meet die specifications of permanganate number, volatile bases, hazen color, UV transmittance, solidification point, and turbidity in order to be used for repolymerization alone or in combination witii virgin CL.5 Reported CL purification methods include recrystallization, solvent extraction, and fractional distillation. One solvent extraction technique involves membrane solvent extraction. Ion exchange resins have been shown to be effective in the purification of aqueous caprolactam solutions. In one such process,... [Pg.540]

Generally, y depends on the purification methods and is a function of the monomer concentration ideally it should be reproducible and not greater than 10% of [Int]0. On a plot of k1 against [Int]0 the intercept on the [Int]0 axis (the impurity intercept ) due to solvent impurities is usually the major part of y, the contribution from impurities of... [Pg.455]

Crystallization is often used as a method of product isolation. Crystallization of the reaction product may be induced if, to the reaction medium, in which it is well soluble, a cosolvent is added in which the product is insoluble. Because for the latter purification method the solubility should be high at high temperatures but much lower at low temperatures, the temperature coefficient of the solubility becomes an important criterion for the employment of a solvent. A further guide is the fact that substances tend to dissolve in solvents with similar polarities, so that a solvent and cosolvent for the recrystallization of a given product can be selected according to the polarities. [Pg.30]

Table A2 (see the appendices) lists briefly the purification methods applicable to many of the solvents listed. It is, however, often advisable to guard solvents, once their bottles have been opened, from the absorption of moisture from the atmosphere, and in the case of basic solvents, also from the absorption of carbon dioxide. If purification is deemed to be necessary and no method is specified in table A2, then usually a method noted for a chemically similar solvent can be employed. Table A2 (see the appendices) lists briefly the purification methods applicable to many of the solvents listed. It is, however, often advisable to guard solvents, once their bottles have been opened, from the absorption of moisture from the atmosphere, and in the case of basic solvents, also from the absorption of carbon dioxide. If purification is deemed to be necessary and no method is specified in table A2, then usually a method noted for a chemically similar solvent can be employed.
The earlier purification method involving CEC required a large volume of solvent (about 900 L/kg of 4), although the resin could be recycled. In contrast, the purification involving extraction in combination with salt crystallization required a smaller volume of solvent (about 25 L/kg of 4). Thus, extraction-based purification contributes significantly to the reduction of solvent waste. [Pg.186]

In previous chapters, we dealt with various electrochemical processes in non-aque-ous solutions, by paying attention to solvent effects on them. Many electrochemical reactions that are not possible in aqueous solutions become possible by use of suitable non-aqueous or mixed solvents. However, in order for the solvents to display their advantages, they must be sufficiently pure. Impurities in the solvents often have a negative influence. Usually commercially available solvents are classified into several grades of purity. Some of the highest-grade solvents are pure enough for immediate use, but all others need purification before use. In this chapter, the effects of solvent impurities on electrochemical measurements are briefly reviewed in Section 10.1, popular methods used in solvent purification and tests of impurities are outlined in Sections 10.2 and 10.3, respectively, and, finally, practical purification procedures are described for 25 electrochemically important solvents in Section 10.4. [Pg.287]

Solvents for electrochemical use have been dealt with in the books of Refs [1]-[3]. A series of IUPAC reports [4, 5] concerning methods of solvent purification and tests for impurities is also useful. The book by Riddick, Bunger and Sakano [6] is the most authoritative, covering the properties of about 500 organic solvents and their purification methods. The book by Marcus [7] also contains useful information about solvent properties. For the latest information about the toxicity and... [Pg.287]

T. K. Organic Solvents, Physical Properties and Methods of Purification, 4th edn, Wiley Sons, New York, 1986. Includes detailed data on solvent properties and methods of solvent purification. [Pg.331]


See other pages where Solvent purification method is mentioned: [Pg.128]    [Pg.208]    [Pg.128]    [Pg.208]    [Pg.176]    [Pg.226]    [Pg.341]    [Pg.80]    [Pg.182]    [Pg.76]    [Pg.390]    [Pg.437]    [Pg.452]    [Pg.228]    [Pg.18]    [Pg.432]    [Pg.61]    [Pg.132]    [Pg.130]    [Pg.131]    [Pg.226]    [Pg.341]    [Pg.294]    [Pg.295]    [Pg.297]    [Pg.337]    [Pg.63]    [Pg.63]    [Pg.359]    [Pg.393]    [Pg.168]    [Pg.176]   
See also in sourсe #XX -- [ Pg.289 ]




SEARCH



Purification methods

Separation/purification methods solvent extraction processes

Solvent method

Solvents purification

© 2024 chempedia.info