Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent process description

Process Description Reverse osmosis (RO) and nanofiltration (NF) processes utilize a membrane that selectively restricts flow of solutes while permitting flow of the solvent. The processes are closely related, and NF is sometimes called loose RO. They are kinetic processes, not equilibrium processes. The solvent is almost always water. [Pg.2034]

Process Description. There are three commercial methods for fractionating palm oil dry, detergent, and solvent process. [Pg.1017]

Process 2 - Process Description. The impurities in the raw material form azeotropes with tetrahydrofuran and ethylacetate. All the azeotropes had to be separated by a combination of counter current extraction and rectification. The aim was to recover ethylacetate and THF. The following major problems had to be solved by a solvent recovery unit 1) separate the THF/ methanol and the THF/ ethanol azeotropes, 2) dewater the THF and ethylacetate (azeotropes), 3) separate THF (Atmospheric boiling point (Tb) = 65.7°C) from ethylacetate (Tb= 77°C) and methylacetate (Tb = 57.1°C). [Pg.85]

One of the first processes employed to separate butadiene from a C4 hydrocarbon stream was an azeotropic distillation which used liquid ammonia as the solvent. A description of this process has been presented by Poffenberger et al.,24 who also gave a typical analysis of the C4 stream together with the boiling points of hydrocarbons and their azeotropes. Other solvents such as furfural and acetonitrile are presently employed to effect this separation.12... [Pg.222]

This process definition covers faults which, though not common, are known to occur in chemical processing. Examples are agitator failure, loss of plant cooling, leaks of cooling liquid into the batch, and process maloperation. Malopera-tion covers over- and under-charging of reactants, solvents or catalysts. Non-specific faults are so called because they are not specific to individual processes and the effect of them can be included in the hazard assessment without additional process description. [Pg.18]

Supercritical anti-solvent micronization can be performed using different processing methods and equipment [17]. Different acronyms were used by the various authors to indicate the micronization process. It has been referred to as GAS (gas anti-solvent), PCA (precipitation by compressed anti-solvent), ASES (aerosol solvent extraction system), SEDS (solution enhanced dispersion by supercritical fluids), and SAS (supercritical anti-solvent) process [8,17]. Since the resulting solid material can be signiflcantly influenced by the adopted process arrangement, a short description of the various methods is presented below. [Pg.648]

Kikic, I., Bertucco, A. and Lora, M. (1997) Thermodynamic Description of Systems Involved in Supercritical Anti-Solvent Processes, The 4 International Symposium on Supercritical Fluids, Sendai, Japan, pp. 39-42. [Pg.305]

A big step forward came with the discovery that bombardment of a liquid target surface by abeam of fast atoms caused continuous desorption of ions that were characteristic of the liquid. Where this liquid consisted of a sample substance dissolved in a solvent of low volatility (a matrix), both positive and negative molecular or quasi-molecular ions characteristic of the sample were produced. The process quickly became known by the acronym FAB (fast-atom bombardment) and for its then-fabulous results on substances that had hitherto proved intractable. Later, it was found that a primary incident beam of fast ions could be used instead, and a more generally descriptive term, LSIMS (liquid secondary ion mass spectrometry) has come into use. However, note that purists still regard and refer to both FAB and LSIMS as simply facets of the original SIMS. In practice, any of the acronyms can be used, but FAB and LSIMS are more descriptive when referring to the primary atom or ion beam. [Pg.17]

Caprolactam Extraction. A high degree of purification is necessary for fiber-grade caprolactam, the monomer for nylon-6 (see Polyamides). Cmde aqueous caprolactam is purified by solvent extractions using aromatic hydrocarbons such as toluene as the solvent (233). Many of the well-known types of column contactors have been used a detailed description of the process is available (234). [Pg.79]

Anhydrous Acetic Acid. In the manufacture of acetic acid by direct oxidation of a petroleum-based feedstock, solvent extraction has been used to separate acetic acid [64-19-7] from the aqueous reaction Hquor containing significant quantities of formic and propionic acids. Isoamyl acetate [123-92-2] is used as solvent to extract nearly all the acetic acid, and some water, from the aqueous feed (236). The extract is then dehydrated by azeotropic distillation using isoamyl acetate as water entrainer (see DISTILLATION, AZEOTROPIC AND EXTRACTIVE). It is claimed that the extraction step in this process affords substantial savings in plant capital investment and operating cost (see Acetic acid and derivatives). A detailed description of various extraction processes is available (237). [Pg.79]

Computerized optimization using the three-parameter description of solvent interaction can facihtate the solvent blend formulation process because numerous possibihties can be examined quickly and easily and other properties can also be considered. This approach is based on the premise that solvent blends with the same solvency and other properties have the same performance characteristics. Eor many solutes, the lowest cost-effective solvent blends have solvency that is at the border between adequate and inadequate solvency. In practice, this usually means that a solvent blend should contain the maximum amount of hydrocarbon the solute can tolerate while still remaining soluble. [Pg.264]

Solution Process. With the exception of fibrous triacetate, practically all cellulose acetate is manufactured by a solution process using sulfuric acid catalyst with acetic anhydride in an acetic acid solvent. An excellent description of this process is given (85). In the process (Fig. 8), cellulose (ca 400 kg) is treated with ca 1200 kg acetic anhydride in 1600 kg acetic acid solvent and 28—40 kg sulfuric acid (7—10% based on cellulose) as catalyst. During the exothermic reaction, the temperature is controlled at 40—45°C to minimize cellulose degradation. After the reaction solution becomes clear and fiber-free and the desired viscosity has been achieved, sufficient aqueous acetic acid (60—70% acid) is added to destroy the excess anhydride and provide 10—15% free water for hydrolysis. At this point, the sulfuric acid catalyst may be partially neutralized with calcium, magnesium, or sodium salts for better control of product molecular weight. [Pg.254]

In the process of establishing the kinetic scheme, the rate studies determine the effects of several possible variables, which may include the temperature, pressure, reactant concentrations, ionic strength, solvent, and surface effects. This part of the kinetic investigation constitutes the phenomenological description of the system. [Pg.7]

That benzene hexachloride isomer mixture is then the raw material for lindane production. The production of lindane per se is not a chemical synthesis operation but a physical separation process. It is possible to influence the gamma isomer content of benzene hexachloride to an extent during the synthesis process. Basically, however, one is faced with the problem of separating a 99%-plus purity gamma isomer from a crude product containing perhaps 12 to 15% of the gamma isomer. The separation and concentration process is done by a carefully controlled solvent extraction and crystallization process. One such process is described by R.D. Donaldson et al. Another description of hexachlorocyclohexane isomer separation is given by R.H. Kimball. [Pg.879]


See other pages where Solvent process description is mentioned: [Pg.2038]    [Pg.826]    [Pg.151]    [Pg.1796]    [Pg.3939]    [Pg.152]    [Pg.63]    [Pg.2042]    [Pg.184]    [Pg.185]    [Pg.84]    [Pg.103]    [Pg.491]    [Pg.560]    [Pg.2841]    [Pg.16]    [Pg.629]    [Pg.78]    [Pg.65]    [Pg.56]    [Pg.493]    [Pg.3]    [Pg.6]    [Pg.482]    [Pg.91]    [Pg.138]    [Pg.26]    [Pg.434]    [Pg.148]    [Pg.962]    [Pg.444]    [Pg.72]   
See also in sourсe #XX -- [ Pg.580 ]




SEARCH



Process description

Solvent description

© 2024 chempedia.info