Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent interaction, nature

The variation of chemical shifts as a function of dilution could be accounted for only qualitatively (235) because of the large diversity of solute-solvent interactions resulting from the nature and the shape of the solvent molecule (Table 1-34). [Pg.74]

The nature of solute-solute and solute-solvent interactions is dependent on the solvent environment. Solvent influences the hydrogen-bonding pattern, solute surface area, and hydrophilic and hydrophobic group exposures. [Pg.62]

Many ceUulosic derivatives form anisotropic, ie, Hquid crystalline, solutions, and cellulose acetate and triacetate are no exception. Various cellulose acetate anisotropic solutions have been made using a variety of solvents (56,57). The nature of the polymer—solvent interaction determines the concentration at which hquid crystalline behavior is initiated. The better the interaction, the lower the concentration needed to form the anisotropic, birefringent polymer solution. Strong organic acids, eg, trifluoroacetic acid are most effective and can produce an anisotropic phase with concentrations as low as 28% (58). Trifluoroacetic acid has been studied with cellulose triacetate alone or in combination with other solvents (59—64) concentrations of 30—42% (wt vol) triacetate were common. [Pg.297]

From the point of view of solute interaction with the structure of the surface, it is now very complex indeed. In contrast to the less polar or dispersive solvents, the character of the interactive surface will be modified dramatically as the concentration of the polar solvent ranges from 0 to l%w/v. However, above l%w/v, the surface will be modified more subtly, allowing a more controlled adjustment of the interactive nature of the surface It would appear that multi-layer adsorption would also be feasible. For example, the second layer of ethyl acetate might have an absorbed layer of the dispersive solvent n-heptane on it. However, any subsequent solvent layers that may be generated will be situated further and further from the silica surface and are likely to be very weakly held and sparse in nature. Under such circumstances their presence, if in fact real, may have little impact on solute retention. [Pg.98]

Because the key operation in studying solvent effects on rates is to vary the solvent, evidently the nature of the solvation shell will vary as the solvent is changed. A distinction is often made between general and specific solvent effects, general effects being associated (by hypothesis) with some appropriate physical property such as dielectric constant, and specific effects with particular solute-solvent interactions in the solvation shell. In this context the idea of preferential solvation (or selective solvation) is often invoked. If a reaction is studied in a mixed solvent. [Pg.403]

Thermal treatment and the nature of the casting solvent can also affect the deformation modes achieved in strained films of ionomers. For example, in films cast from polar dimethylformamide (DMF), the solvent interacts with ion-rich clusters and essentially destroys them, as is evident form absence of a second, higher temperature loss peak in such samples. As a result, even in a cast DMF sample of Na-SPS ionomer of high ion content (8.5 mol%), the only deformation mode observed in tensile straining is crazing. However, when these films are given an additional heat treatment (41 h at 210°C), shear... [Pg.148]

Table XXXVI.—Solvent Interaction with Natural Rubber ... Table XXXVI.—Solvent Interaction with Natural Rubber ...
In the Born equation, the ion solvent interaction energy is determined only by one physical parameter of the solvent, i.e., the dielectric constant. However, since actual ion-solvent interactions include specific interactions such as the charge-transfer interaction or hydrogen bonds, it is natural to think that the Born equation should be insufficient. It is well known that the difference in the behavior of an ion in different solvents is not often elucidated in terms of the dielectric constant. [Pg.42]

For polar solutes and solvents, particularly those capable of hydrogen bonding, secondary solvent effects due to the specific nature of solute-solvent interactions may also have to be included in the model, since the ass imption that they are identical in the adsorbed and mobile phases, and therefore self-canceling, is no longer necessarily true. The addition of a secondary solvent term... [Pg.707]

Below a critical concentration, c, in a thermodynamically good solvent, r 0 can be standardised against the overlap parameter c [r)]. However, for c>c, and in the case of a 0-solvent for parameter c-[r ]>0.7, r 0 is a function of the Bueche parameter, cMw The critical concentration c is found to be Mw and solvent independent, as predicted by Graessley. In the case of semi-dilute polymer solutions the relaxation time and slope in the linear region of the flow are found to be strongly influenced by the nature of polymer-solvent interactions. Taking this into account, it is possible to predict the shear viscosity and the critical shear rate at which shear-induced degradation occurs as a function of Mw c and the solvent power. [Pg.40]

The nature of the solvent influences both the structure of the polymer in solution and its dynamics. In good solvents the polymer adopts an expanded configuration and in poor solvents it takes on a compact form. If the polymer solution is suddenly changed from good to poor solvent conditions, polymer collapse from the expanded to compact forms will occur [78], A number of models have been suggested for the mechanism of the collapse [79-82], Hydrodynamic interactions are expected to play an important part in the dynamics of the collapse and we show how MPC simulations have been used to investigate this problem. Hybrid MD-MPC simulations of the collapse dynamics have been carried out for systems where bead-solvent interactions are either explicitly included [83] or accounted for implicitly in the multiparticle collision events [84, 85]. [Pg.124]

The calculations were subsequently extended to moderate surface charges and electrolyte concentrations.8 The compact-layer capacitance, in this approach, clearly depends on the nature of the solvent, the nature of the metal electrode, and the interaction between solvent and metal. The work8,109 describing the electrodesolvent system with the use of nonlocal dielectric functions e(x, x ) is reviewed and discussed by Vorotyntsev, Kornyshev, and coworkers.6,77 With several assumptions for e(x,x ), related to the Thomas-Fermi model, an explicit expression6 for the compact-layer capacitance could be derived ... [Pg.88]

Let us make some connections to the results which came from the previous model development. First, if we compare (3.19)-(3.22) with (3.11)-(3.15), a natural identification of the solvent coordinate s in Sec. 3 is in fact just the fluctuating force SF on x at the transition state. (Note especially that this choice associates the solvent coordinate with a direct measure of the relevant solute-solvent interaction.) The solvent mass, force constant and frequencies in Sec. 3 would then be given molecular expressions via (3.19)-(3.21), while the solvent friction i (t) of Sec. 3 would be the friction per mass for Sf (3.22),... [Pg.244]

The action of organic solvents on natural polymers combustible minerals (coal and brown coal or peat) is intensively studied for a long time due to following reasons. Firstly, this is one of the successful method of studying the structure of combustible materials and the second is their technological application for obtaining of a so-called montan-wax or low-molecular liquid extracts which can be transformed into synthetic liquid fuel due to hydration process. Moreover, an interaction of a coal with the solvents is a basis of the coals liquation processes and coals transformation into liquid fuel. [Pg.52]

The overall importance of the medium on the reaction rates has been shown previously, but the nature and extent of solute-solvent interactions can alter tremendously various properties of the nucleophile the variations are usually satisfactorily correlated by some of the several quantitative structure-activity relationships (QSAR) that have been discussed37,38,51,96. The term quantitative structure-property relationship (QSPR) has been recently proposed for cases where a specific property, such as the basicity, is examined97. [Pg.1238]

Association and mobilities are related in a complex way to the bulk properties of the solvent and solute. These properties include the charge density and distribution on the ions and the Lewis base properties, the strength and nature of the solvent molecule dipole, the hydrogen-bonding capability, and the intermolecular structure of the solvent. Some correlations can be made on the basis of mobility and association trends in series such as the halides and alkali metals within a single solvent others can be drawn between solvents for a given ion. It appears that conductance measurements provide a clear measure of the sum of ion-solvent interactions, but that other techniques must be used in conjunction with conductance if assessments of individual contributions from specific factors are to be made. [Pg.57]

Although simple, a model system containing one solvent molecule together with one ion already provides valuable insight into the nature of the ion-solvent interaction. There is also convincing evidence that this two body potential dominates in much more complicated situations like in the liquid state 88,89,162). Molecular data for one to one complexes can be calculated with sufficient accuracy within reasonable time limits. Gas-phase data reported in Chapter III provide a direct basis for comparison of the calculated results. [Pg.55]


See other pages where Solvent interaction, nature is mentioned: [Pg.417]    [Pg.88]    [Pg.482]    [Pg.783]    [Pg.192]    [Pg.363]    [Pg.870]    [Pg.60]    [Pg.196]    [Pg.742]    [Pg.320]    [Pg.57]    [Pg.199]    [Pg.510]    [Pg.322]    [Pg.334]    [Pg.334]    [Pg.82]    [Pg.135]    [Pg.162]    [Pg.311]    [Pg.73]    [Pg.136]    [Pg.263]    [Pg.284]    [Pg.201]    [Pg.1240]    [Pg.119]    [Pg.5]    [Pg.121]    [Pg.148]    [Pg.155]    [Pg.134]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Solvent nature

Solvents, interactive

© 2024 chempedia.info