Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent extraction description

The development of the novel Davy-McKee combined mixer—settler (CMS) has been described (121). It consists of a single vessel (Fig. 13d) in which three 2ones coexist under operating conditions. A detailed description of units used for uranium recovery has been reported (122), and the units have also been studied at the laboratory scale (123). AppHcation of the Davy combined mixer electrostatically assisted settler (CMAS) to copper stripping from an organic solvent extraction solution has been reported (124). [Pg.75]

Caprolactam Extraction. A high degree of purification is necessary for fiber-grade caprolactam, the monomer for nylon-6 (see Polyamides). Cmde aqueous caprolactam is purified by solvent extractions using aromatic hydrocarbons such as toluene as the solvent (233). Many of the well-known types of column contactors have been used a detailed description of the process is available (234). [Pg.79]

Anhydrous Acetic Acid. In the manufacture of acetic acid by direct oxidation of a petroleum-based feedstock, solvent extraction has been used to separate acetic acid [64-19-7] from the aqueous reaction Hquor containing significant quantities of formic and propionic acids. Isoamyl acetate [123-92-2] is used as solvent to extract nearly all the acetic acid, and some water, from the aqueous feed (236). The extract is then dehydrated by azeotropic distillation using isoamyl acetate as water entrainer (see DISTILLATION, AZEOTROPIC AND EXTRACTIVE). It is claimed that the extraction step in this process affords substantial savings in plant capital investment and operating cost (see Acetic acid and derivatives). A detailed description of various extraction processes is available (237). [Pg.79]

That benzene hexachloride isomer mixture is then the raw material for lindane production. The production of lindane per se is not a chemical synthesis operation but a physical separation process. It is possible to influence the gamma isomer content of benzene hexachloride to an extent during the synthesis process. Basically, however, one is faced with the problem of separating a 99%-plus purity gamma isomer from a crude product containing perhaps 12 to 15% of the gamma isomer. The separation and concentration process is done by a carefully controlled solvent extraction and crystallization process. One such process is described by R.D. Donaldson et al. Another description of hexachlorocyclohexane isomer separation is given by R.H. Kimball. [Pg.879]

The present description pertaining to copper refers to solvent extraction of copper at the Bluebird Mine, Miami. When the plant became operational in the first quarter of 1968 it used L1X 64, but L1X 64N was introduced in to its operation from late 1968. The ore consists of the oxidized minerals, chrysocolla and lesser amounts of azurite and malachite. A heap leaching process is adopted for this copper resource. Heap-leached copper solution is subjected to solvent extraction operation, the extractant being a solution of 7-8% L1X 64N incorporated in kerosene diluent. The extraction process flowsheet is shown in Figure 5.20. The extraction equilibrium diagram portrayed in Figure 5.21 (A) shows the condi-... [Pg.524]

Additionally, advanced tools for special applications are offered, including provisions for parallel reflux, solvent extraction, and hydrolysis, as well as electrodeless discharge lamps for photochemistry (Fig. 3.10). A detailed description of these accessories can be found on the Milestone website [11],... [Pg.39]

In the early analytical applications of solvent extraction, optimal extraction or separation conditions were obtained empirically. This was unsatisfactory and general mathematical descriptions were developed by a number of researchers in many countries. This was especially important for large-scale industrial use and is an activity that continues today almost entirely with computers. [Pg.24]

Because metals differ in size, charge, and electronic stractnre, no two metals behave exactly the same in the same solvent extraction system, not even for the same class of solntes. Nevertheless, there are systematic trends in the formation and extraction of these complexes, as described in Chapter 3. Here, the emphasis is on models that give a quantitative description of the extraction within each type or class. [Pg.130]

Diffusion is a complex phenomenon. A complete physical description involves conceptual and mathematical difficulties associated with the need to involve theories of molecular interactions and to solve complicated differential equations [3-6]. Here and in sections 5.8 and 5.9, we present only a simplified picture of the diffusional processes, which is valid for hmiting conditions. The objective is to make the reader aware of the importance of this phenomenon in connection with solvent extraction kinetics. [Pg.213]

Unfortunately, little direct information is available on the physicochemical properties of the interface, since real interfacial properties (dielectric constant, viscosity, density, charge distribution) are difficult to measure, and the interpretation of the limited results so far available on systems relevant to solvent extraction are open to discussion. Interfacial tension measurements are, in this respect, an exception and can be easily performed by several standard physicochemical techniques. Specialized treatises on surface chemistry provide an exhaustive description of the interfacial phenomena [10,11]. The interfacial tension, y, is defined as that force per unit length that is required to increase the contact surface of two immiscible liquids by 1 cm. Its units, in the CGS system, are dyne per centimeter (dyne cm" ). Adsorption of extractant molecules at the interface lowers the interfacial tension and makes it easier to disperse one phase into the other. [Pg.224]

A more detailed description of tests for LA is given in Vol l,pp A580-R to A587-R of Encycl Tests for Propellants Since std colloidal proplnts are mixts of colloided NC with explosive(such as NG, NGu, DEGDN, etc ) and nonexpl ingredients(such as DPhA, EtCentr, DBuPh, etc), no simple colorimetric tests are known for identification of components without preliminary separation of them. The separation can be done by solvent extractions, fractionation of the extracts or by chromatographic separation... [Pg.200]

Secondly, the description of the general procedures given below, as distinct from the specific experimental procedures of the preparations described in earlier chapters, provides an excellent opportunity for the student to explore on the small scale the optimum reaction conditions, the chromatographic monitoring of the reaction, the methods of isolation and purification procedures (solvent extraction, recrystallisation, etc.) for the successful completion of the preparation. The small-scale nature of the experiments is of particular importance in providing experience of those techniques of reaction work-up in which mechanical loss is frequently the reason for failure. Such experience is vital to the synthetic chemist since many of the new chemo-, regio- and stereo-specific reagents are expensive and used in small-scale reactions. [Pg.1235]

Solvent extraction Database (SXD) software has been developed by A. Varnek et al.51 Each record of SXD corresponds to one extraction equilibrium and contains 90 fields to store bibliographic information, system descriptions, chemical structures of extractants, and thermodynamic and kinetic data in textual, numerical, and graphical forms. A search can be performed by any field including 2D structure. SXD tools allow the user to compare plots from different records and to select a subset of data according to user-defined constraints (identical metal, content of aqueous or organic phases, etc.). This database, containing about 3,500 records, is available on the INTERNET (http //infochim.u-strasbg.fr/sxd). [Pg.329]

The techniques used were based on solvent extraction (e.g. with pentane), complexation (e.g. with diethyldithiocarbamate, EDTA), derivatisation (e.g. hydride generation, propylation or ethylation), and capillary GC separation followed by a range of detection techniques (e.g. QFAAS, ICPMS, MIP-AES, MS) DPASV has also been successfully used. In the frame of this project, two new techniques were also developed and successfully applied, namely supercritical fluid extraction followed by CGC/MS and isotope dilution ICPMS after ethylation and CGC separation. A full description of the techniques is given elsewhere (Quevauviller, 1998b). [Pg.150]

Studies on the solvent extraction of actinide ions by different combinations of extractants have been reviewed. Various equilibria involved in the extraction processes and the formation of the extract-able complexes have been considered along with their equilibrium constant data. Various methods which are useful in establishing the composition and the nature of the extractable complexes are presented. The data on isolation and structural studies of some complexes, involved in synergic extraction, are also included. A brief description of the different areas in which synergic extraction is finding application is also given. Many combinations of extractants, where the studies conducted are very few but, which are likely to yield enhanced extractions are indicated. Areas of research, both from the academic and applied points of view, which require attention are suggested. [Pg.35]

The use of GC-MIP-AES is advantageous because it avoids the predecomposition step required in the AAS detection mode. The first applications of the MIP-AES detector for Hg speciation and detection were reported in the 1970s [27-29]. Despite the overall good detection ability of the detectors, however, most of the above methods require large sample volumes, tedious solvent extraction procedures, and usually lead to the final determination of only the Me-Hg species. The description of the feasibility of quantitative in situ aqueous ethylation of Hg2-1- and Me-Hg followed by on-line preconcentration and detection by atomic fluorescences pectro-metry (AFS) or AAS certainly produces a wealth of information since it allows all Hg species to be detected in the same chromatographic run. Also on-line speciation of Hg and Me-Hg by chromatography-AFS hydride generation (HG) was used [30]. [Pg.711]

Numerous extraction methods and techniques have been developed and reported, especially if one takes into account the variety of modifications. The most common and simple general classification of these methods is similar to that introduced in chromatography and based on the kind of phase to which the analyte is transferred. One can distinguish the extractions as liquid, solid, gas, and supercritical fluid phase extractions. More precise description specifies the two phases between which the analyte is distributed (e.g., liquid-liquid or solid-liquid [leaching] extractions). The latter methods are all called solvent extraction. [Pg.124]

Traditional methods of extraction, such as Soxhlet, have been replaced by modern techniques as supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), ultrasonic extraction, and accelerated solvent extraction (ASE) during recent years. The application of specific methods to these kinds of samples has permitted the development of a great number of other extraction methods. In the following list, a brief description is given ... [Pg.1228]

The techniques used in the certification involved solvent extraction (MeHg) or acid digestion, either pressurised, under reflux or -based (total Hg), derivatisation (e.g. NaBH4), separation by capillary gas chromatography (CGC) and various methods of final detection (e.g AAS, ECD, MIP). Table 7.6 gives an account of the techniques used by each laboratory in the certification for methylmercury in the case of total mercury, the final determination techniques were CVAAS, CVAFS, ICPMS and RNAA. More details on the method description can be found in the certification report [7], including also important precautions taken in the certification to avoid sources of error. [Pg.271]


See other pages where Solvent extraction description is mentioned: [Pg.80]    [Pg.519]    [Pg.526]    [Pg.826]    [Pg.70]    [Pg.848]    [Pg.163]    [Pg.117]    [Pg.229]    [Pg.586]    [Pg.187]    [Pg.801]    [Pg.383]    [Pg.496]    [Pg.12]    [Pg.122]    [Pg.36]    [Pg.7]    [Pg.2421]    [Pg.137]    [Pg.801]    [Pg.342]    [Pg.1777]    [Pg.185]    [Pg.37]    [Pg.57]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Solvent description

© 2024 chempedia.info