Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvation of enolate

Several ester enolates have also been examined by X-ray crystallography. The enolates of /-butyl propionate and /-butyl 3-methylpropionate were obtained as TMEDA solvates of enolate dimers. The enolate of methyl 3,3-dimethylbutanoate was obtained as a THF-solvated tetramer. [Pg.436]

In cases where there is strong solvation of the carbanion, as for example hydrogen bonding solvation of enolate or nitronate ions in hydroxylic solvents, the intrinsic barrier is increased further because the transition state cannot benefit significantly from this solvation. This is the reason why AG for the deprotonation of nitroalkanes in water is particularly high, i.e., much higher than in dipolar aprotic solvents, see, e.g., entry 11 versus 15 and entry 13 versus 16 in Table 1. These solvation effects will be discussed in more detail below. [Pg.229]

It has been proposed that part or all of the intrinsic barrier for deprotonation of a-carbonyl carbon is associated with the requirement for solvation of the negatively charged oxygen of the enolate anion [80]. However, the observation of small intrinsic barriers for deprotonation of oxygen acids by electronegative bases to form solvated anions [31] suggests that the requirement for a similar solvation of enolate anions should not make a large contribution to the intrinsic barrier for deprotonation of a-carbonyl carbon. [Pg.965]

Solvation of enolate 1 is a hypothesis which is perfectly coherent with the... [Pg.538]

Fig. 7.3. Crystal structures of some lithium etiolates of ketones. (A) Unsolvated hexameric enolate of methyl t-butyl ketone (B) tetrahydrofuran solvate of tetramer of enolate of methyl r-butyl ketone (C) tetrahydrofuran solvate of tetramer of enolate of cyclopentanone (D) dimeric enolate of 3,3-dimethyl-4-(r-butyldimethylsiloxy)-2-pentanone. (Structural diagrams are reproduced from Refs. 66-69.) by permission of the American Chemical Society and Verlag Helvetica Chimica Acta AG. Fig. 7.3. Crystal structures of some lithium etiolates of ketones. (A) Unsolvated hexameric enolate of methyl t-butyl ketone (B) tetrahydrofuran solvate of tetramer of enolate of methyl r-butyl ketone (C) tetrahydrofuran solvate of tetramer of enolate of cyclopentanone (D) dimeric enolate of 3,3-dimethyl-4-(r-butyldimethylsiloxy)-2-pentanone. (Structural diagrams are reproduced from Refs. 66-69.) by permission of the American Chemical Society and Verlag Helvetica Chimica Acta AG.
The equilibrium ratios of enolates for several ketone-enolate systems are also shown in Scheme 1.1. Equilibrium among the various enolates of a ketone can be established by the presence of an excess of ketone, which permits reversible proton transfer. Equilibration is also favored by the presence of dissociating additives such as HMPA. The composition of the equilibrium enolate mixture is usually more closely balanced than for kinetically controlled conditions. In general, the more highly substituted enolate is the preferred isomer, but if the alkyl groups are sufficiently branched as to interfere with solvation, there can be exceptions. This factor, along with CH3/CH3 steric repulsion, presumably accounts for the stability of the less-substituted enolate from 3-methyl-2-butanone (Entry 3). [Pg.6]

If HMPA is included in the solvent, the Z-enolate predominates.236,238 DMPU also favors the Z-enolate. The switch to the Z-enolate with HMPA or DMPU is attributed to a looser, perhaps acyclic TS being favored as the result of strong solvation of the lithium ion. The steric factors favoring the -TS are therefore diminished.239 These general principles of solvent control of enolate stereochemistry are applicable to other systems.240 For example, by changing the conditions for silyl ketene acetal formation, the diastereomeric compounds 17a and 17b can be converted to the same product with high diastereoselectivity.241... [Pg.568]

Vlhen the chiral methylation is carried out with 30% aqueous NaOH the indanone is deprotonated at the interface but does not precipitate as the sodium enolate (Figure 11). In this system there are 3 to 4 molecules of H2O per molecule of catalyst available while in the 50% NaOH reactions the toluene is very dry with only 1 molecule of H2O available per catalyst molecule thus forcing the formation of tight ion pairs. Solvation of the ion pairs in the toluene/30% NaOH system should decrease the ee which we indeed observe with an optimum 78% versus 94% in the 50% NaOH reaction. In the 30% NaOH reactions the ee decreases from 78% to 55% as the catalyst concentration increases from 1 mM to 16 mM (80 mM 5, 560 mM CH3CI, 20 C). Based on these ee s rates of formation of (-h)-enantiomer and racemic product can be calculated. When the log of these rates are plotted versus the log of catalyst concentrations (Figure 13) we find an order of about 0.5 in the catalyst for the chiral process similar to that found using 50% NaOH consistent with a dimer-monomer pre-equilibrium. The order in catalyst for the... [Pg.77]

Polar protic solvents also possess a pronounced ability to separate ion pairs but are less favorable as solvents for enolate alkylation reactions because they coordinate to both the metal cation and the enolate ion. Solvation of the enolate anion occurs through hydrogen bonding. The solvated enolate is relatively less reactive because the hydrogen-bonded enolate must be disrupted during alkylation. Enolates generated in polar protic solvents such as water, alcohols, or ammonia are therefore less reactive than the same enolate in a polar aprotic solvent such as DMSO. [Pg.22]

Because of their usefulness in aldol additions and other synthetic methods (see especially Section 6.5.2), there has been a good deal of interest in the factors that control the stereoselectivity of enolate formation from esters. For simple esters such as ethyl propanoate, the /r-enolate is preferred under kinetic conditions using a strong base such as LDA in THF solution. Inclusion of a strong cation solvating co-solvent, such as HMPA or tetrahydro-1,3 -dimethyl-2(1 Z/)p y r i m i d o nc (DMPU) favors the Z-enolate.13... [Pg.68]

Solvation can have a large effect on intrinsic barriers or intrinsic rate constants, especially hydrogen bonding solvation of nitronate or enolate ions in hydroxylic solvents. Table 4 reports intrinsic rate constants in water and aqueous DMSO for a number of representative examples.19,20,23 25,40,54 56 Entries 1-4 which refer to nitroalkanes show large increases in ogka when... [Pg.238]

Other factors (charge repulsion, solvation factors, etc.) could influence the position of the equilibrium in favor of enolate dianion 216. It is also possible that there is a kinetic preference for the formation of dianion 216 and that this species would undergo protonation more rapidly than equilibration. This rule of axial protonation" of 216 has been found to be widely applicable in many cases. However, in systems in which a significant amount of strain must be introduced in order for protonation to occur axially on 216, protonation of conformer 217 (and even conformer 218) becomes important (60). [Pg.130]

FIGURE 2. Molecular arrangement of methanol solvated lithium enolate of 1,3-cyclohexanedione (LiCHD)224... [Pg.574]

Finally, the alkylation of the hexameric di-solvated lithium enolate of methyl 3-amino-butyrate with benzyl bromide in THF shows a conversion-dependent deceleration attributed to the formation of LiBr (this is relevant for NMR results). Interestingly, the side dibenzylated product results from the alkylation of the enolate formed by deprotonation of the syn isomer (km/kan,i = 7)288. Kinetic studies performed under pseudo-first-order conditions reveal approximate first-order dependencies in THF (n = 1.3) and enolate. The idealized rate law implicates a direct alkylation of the hexamer without deaggregation. Moreover, the hypothesis of an anti alkylation taking place at either end of the open form of the hexamer (Scheme 81), although unusual, was not excluded by MNDO calculations. [Pg.585]

The solvent effect has long been recognized as an important factor in that it affects the lithium-oxygen bond polarization but also the electrophilic reagent380,398. The effect on aggregation was evaluated by measurement and comparison of the reactivities of monomeric, dimeric and tetrameric forms of LiPhIBP and LiPhAT or LiPhIBP in various ethers252. In the less polar solvent methyl-tert-butyl ether, lithium enolates are tetrameric and do not react with benzyl bromide. On the contrary, with added HMPA the dissociation of the tetrameric LiPhIBP is accompanied by solvation of each monomer by 1 -2... [Pg.587]

Taking into account the fact that the solvation of ambident anions in the activated complex may differ considerably from that of the free anion, another explanation for the solvent effect on orientation, based on the concept of hard and soft acids and bases (HSAB) [275] (see also Section 3.3.2), seems preferable [366]. In ambident anions, the less electronegative and more polarizable donor atom is usually the softer base, whereas the more electronegative atom is a hard Lewis base. Thus, in enolate ions, the oxygen atom is hard and the carbon atom is soft, in the thiocyanate ion the nitrogen atom is hard and the sulfur atom is soft, etc. The mode of reaction can be predicted from the hardness or softness of the electrophile. In protic solvents, the two nucleophilic sites in the ambident anion must interact with two electrophiles, the protic solvent and the substrate RX, of which the protic solvent is a hard and RX a soft acid. Therefore, in protic solvents it is to be expected that the softer of the two nucleophilic atoms (C versus O, N versus O, S versus N) should react with the softer acid RX. [Pg.272]

Solvation of lithium enolates in ether solvents was modeled by a combination of specific coordination of dimethyl ether ligands on each lithium and dielectric solvation ... [Pg.9]


See other pages where Solvation of enolate is mentioned: [Pg.422]    [Pg.436]    [Pg.237]    [Pg.18]    [Pg.79]    [Pg.282]    [Pg.57]    [Pg.282]    [Pg.10]    [Pg.703]    [Pg.147]    [Pg.364]    [Pg.147]    [Pg.195]    [Pg.293]    [Pg.299]    [Pg.373]    [Pg.374]    [Pg.555]    [Pg.568]    [Pg.572]    [Pg.607]    [Pg.183]    [Pg.265]    [Pg.271]    [Pg.291]    [Pg.223]    [Pg.17]   
See also in sourсe #XX -- [ Pg.538 , Pg.539 ]




SEARCH



Enolate solvation

© 2024 chempedia.info