Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton transfer, reversible

The first step of this new mechanism is exactly the same as that seen earlier for the reaction of tert butyl alcohol with hydrogen chloride—formation of an alkyloxonmm ion by proton transfer from the hydrogen halide to the alcohol Like the earlier exam pie this IS a rapid reversible Brpnsted acid-base reaction... [Pg.164]

These equations tell us that the reverse process proton transfer from acids to bicarbon ate to form carbon dioxide will be favorable when of the acid exceeds 4 3 X 10 (pK, < 6 4) Among compounds containing carbon hydrogen and oxygen only car boxylic acids are acidic enough to meet this requirement They dissolve m aqueous sodium bicarbonate with the evolution of carbon dioxide This behavior is the basis of a qualitative test for carboxylic acids... [Pg.805]

Hydrogen transfer in excited electronic states is being intensively studied with time-resolved spectroscopy. A typical scheme of electronic terms is shown in fig. 46. A vertical optical transition, induced by a picosecond laser pulse, populates the initial well of the excited Si state. The reverse optical transition, observed as the fluorescence band Fj, is accompanied by proton transfer to the second well with lower energy. This transfer is registered as the appearance of another fluorescence band, F2, with a large anti-Stokes shift. The rate constant is inferred from the time dependence of the relative intensities of these bands in dual fluorescence. The experimental data obtained by this method have been reviewed by Barbara et al. [1989]. We only quote the example of hydrogen transfer in the excited state of... [Pg.109]

This mechanism explains the observed formation of the more highly substituted alcohol from unsymmetrical alkenes (Markownikoff s rule). A number of other points must be considered in order to provide a more complete picture of the mechanism. Is the protonation step reversible Is there a discrete carbocation intermediate, or does the nucleophile become involved before proton transfer is complete Can other reactions of the carbocation, such as rearrangement, compete with capture by water ... [Pg.358]

A direct irreversible proton transfer in limiting stage of 1-ethoxybut- l-en-3-yne hydration is confirmed by the value of kinetic isotopic effect k ilk = 2.9. For fast reversible proton transitions this value is less than 1. [Pg.194]

A1C13, or S02 in an inert solvent cause colour changes in indicators similar to those produced by hydrochloric acid, and these changes are reversed by bases so that titrations can be carried out. Compounds of the type of BF3 are usually described as Lewis acids or electron acceptors. The Lewis bases (e.g. ammonia, pyridine) are virtually identical with the Bransted-Lowry bases. The great disadvantage of the Lewis definition of acids is that, unlike proton-transfer reactions, it is incapable of general quantitative treatment. [Pg.23]

Rate parameters [(da/df), A, E measured for dehydroxylations are frequently sensitive to the availability of water vapour in the vicinity of the reactant and this accounts for the apparent variations in kinetic data sometimes found between different reports concerned with the same reaction. Water adsorbed on product adjoining the reaction interface could be expected to participate in the reversible proton transfer step, the precursor to water elimination. Despite this influence of PH2o on reaction rate, we are aware of no reported instance of S—T behaviour in dehydroxylations. [Pg.137]

Also considered as possibilities have been transition states involving IV, below, the conjugate base of II, and either RjNHJ or BH+ 29,30. This mechanism, with II and IV maintained at equilibrium by rapid, reversible proton transfers and BH + or R2NH2 assisting separation of the leaving group from intermediate IV in the rate-limiting step, may be formulated as... [Pg.415]

FIGURE 5.8. A downhill trajectory for the proton transfer step in the catalytic reaction of trypsin. The trajectory moves on the actual ground state potential, from the top of the barrier to the relaxed enzyme-substrate complex. 1, 2, and 3 designate different points along the trajectory, whose respective configurations are depicted in the upper part of the figure. The time reversal of this trajectory corresponds to a very rare fluctuation that leads to a proton transfer from Ser 195 to His 57. [Pg.147]

However, on heating to about 200°C, a thermodynamically more favorable reaction takes place. The proton transfer is reversed, and the amine acts as a nucleophile as it attacks the carbon atom of the carboxyl group in a condensation reaction ... [Pg.880]

Because of their basic properties, aikaioids were among the first naturai substances that eariy chemists extracted and purified. Morphine was isoiated from poppies in 1805 and was the first aikaioid to be characterized. When treated with aqueous strong acid, aikaioids accept protons to produce water-soiubie cations. The protonated aikaioids dissoive, ieaving the rest of the piant materiais behind. Adding strong base to the aqueous extract reverses the proton-transfer reaction, converts the aikaioid back to its neutrai base form, and causes pure aikaioid to precipitate from the soiution ... [Pg.1236]

Only three steps of the proposed mechanism (Fig. 18.20) could not be carried out individually under stoichiometric conditions. At pH 7 and the potential-dependent part of the catalytic wave (>150 mV vs. NHE), the —30 mV/pH dependence of the turnover frequency was observed for both Ee/Cu and Cu-free (Fe-only) forms of catalysts 2, and therefore it requires two reversible electron transfer steps prior to the turnover-determining step (TDS) and one proton transfer step either prior to the TDS or as the TDS. Under these conditions, the resting state of the catalyst was determined to be ferric-aqua/Cu which was in a rapid equilibrium with the fully reduced ferrous-aqua/Cu form (the Fe - and potentials were measured to be within < 20 mV of each other, as they are in cytochrome c oxidase, resulting in a two-electron redox equilibrium). This first redox equilibrium is biased toward the catalytically inactive fully oxidized state at potentials >0.1 V, and therefore it controls the molar fraction of the catalytically active metalloporphyrin. The fully reduced ferrous-aqua/Cu form is also in a rapid equilibrium with the catalytically active 5-coordinate ferrous porphyrin. As a result of these two equilibria, at 150 mV (vs. NHE), only <0.1%... [Pg.681]

For amide hydrolysis in acid, proton transfer to give a cationic intermediate is easy, and breakdown to products is favored over reversion to starting material process b is hopelessly bad, but process b is better than a. [Pg.19]

The equilibrium ratios of enolates for several ketone-enolate systems are also shown in Scheme 1.1. Equilibrium among the various enolates of a ketone can be established by the presence of an excess of ketone, which permits reversible proton transfer. Equilibration is also favored by the presence of dissociating additives such as HMPA. The composition of the equilibrium enolate mixture is usually more closely balanced than for kinetically controlled conditions. In general, the more highly substituted enolate is the preferred isomer, but if the alkyl groups are sufficiently branched as to interfere with solvation, there can be exceptions. This factor, along with CH3/CH3 steric repulsion, presumably accounts for the stability of the less-substituted enolate from 3-methyl-2-butanone (Entry 3). [Pg.6]

The exchange proreeds in three steps. The first step is substitution of the free ligand at one end of the chelate to give the intermediate I(fca). The second is intramolecular proton transfer between the unidentate ligand in l(kb). The third is the reverse of the first (k a). Consequently, application of the steady-state approximation to the intermediate 1, whose concentration is reasonably assumed to be very low, provides... [Pg.259]


See other pages where Proton transfer, reversible is mentioned: [Pg.35]    [Pg.55]    [Pg.35]    [Pg.55]    [Pg.151]    [Pg.52]    [Pg.216]    [Pg.454]    [Pg.30]    [Pg.522]    [Pg.523]    [Pg.184]    [Pg.161]    [Pg.191]    [Pg.27]    [Pg.66]    [Pg.77]    [Pg.143]    [Pg.167]    [Pg.420]    [Pg.164]    [Pg.471]    [Pg.470]    [Pg.38]    [Pg.55]    [Pg.1189]    [Pg.673]    [Pg.687]    [Pg.689]    [Pg.213]    [Pg.16]    [Pg.23]    [Pg.24]    [Pg.101]    [Pg.107]   
See also in sourсe #XX -- [ Pg.269 , Pg.273 , Pg.275 , Pg.282 , Pg.285 , Pg.287 ]




SEARCH



Protonation reversibility

Protonation reversible

Reverse protonation

Reversible transfer

© 2024 chempedia.info