Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility nitrobenzene

Physical Properties. Both solids, freely soluble in hot water, sparingly in cold water. o-Nitrophcnol, bright yellow, volatile in steam, odour resembling both that of phenol and of nitrobenzene />-m trophenol, colourless when pure, non-volatile in steam, odourless. [Pg.386]

The commercial product, m.p. 53-55°, may be used. Alternatively the methyl -naphthyl ketone may be prepared from naphthalene as described in Section IV,136. The Friedel - Crafts reaction in nitrobenzene solution yields about 90 per cent, of the p-ketone and 10 per cent, of the a-ketone in carbon disulphide solution at — 15°, the proportions ore 65 per cent, of the a- and 35 per cent, of the p-isomer. With chlorobenzene ns the reaction medium, a high proportion of the a-ketone is also formed. Separation of the liquid a-isomer from the solid p-isomer in Such mixtures (which remain liquid at the ordinary temp>erature) is readily effected through the picrates the picrate of the liquid a-aceto compound is less soluble and the higher melting. [Pg.767]

Physical Properties. Nitrobenzene is readily soluble in most organic solvents and is completely miscible with diethyl ether and benzene. Nitrobenzene is only slightly soluble in water with a solubiUty of 0.19 parts pet 100 parts of water at 20°C and 0.8 pph at 80°C. Nitrobenzene is a good organic solvent. For example, it is used in Friedel-Crafts reactions because aluminum chloride is soluble in nitrobenzene. The physical properties of nitrobenzene are summarized in Table 1. [Pg.63]

Manufacture and Processing. Mononitrotoluenes are produced by the nitration of toluene in a manner similar to that described for nitrobenzene. The presence of the methyl group on the aromatic ring faciUtates the nitration of toluene, as compared to that of benzene, and increases the ease of oxidation which results in undesirable by-products. Thus the nitration of toluene generally is carried out at lower temperatures than the nitration of benzene to minimize oxidative side reactions. Because toluene nitrates at a faster rate than benzene, the milder conditions also reduce the formation of dinitrotoluenes. Toluene is less soluble than benzene in the acid phase, thus vigorous agitation of the reaction mixture is necessary to maximize the interfacial area of the two phases and the mass transfer of the reactants. The rate of a typical industrial nitration can be modeled in terms of a fast reaction taking place in a zone in the aqueous phase adjacent to the interface where the reaction is diffusion controlled. [Pg.70]

Strong acids and strong alkaUes can severely bum the skin, chromium compounds can produce skin rashes, and repeated exposure to solvents causes removal of natural oils from the skin. Infection is always a concern for damaged skin. Absorption through the skin is possible for materials that are appreciably soluble iu both water and oil, eg, nitrobenzene, aniline, and tetraethyllead. Other materials can be absorbed if first dissolved iu extremely good solvents, eg, dimethyl sulfoxide. Subcutaneous iujection can occur accidentally by direct exposure of the circulatory system to a chemical by means of a cut or scratch or iuadvertent penetration of the skin with a hypodermic needle. [Pg.95]

When sublimed, anthraquinone forms a pale yeUow, crystalline material, needle-like in shape. Unlike anthracene, it exhibits no fluorescence. It melts at 286°C and boils at 379°—381°C. At much higher temperatures, decomposition occurs. Anthraquinone has only a slight solubiUty in alcohol or benzene and is best recrystallized from glacial acetic acid or high boiling solvents such as nitrobenzene or dichlorobenzene. It is very soluble in concentrated sulfuric acid. In methanol, uv absorptions of anthraquinone are at 250 nm (e = 4.98), 270 nm (4.5), and 325 nm (4.02) (4). In the it spectmm, the double aUyflc ketone absorbs at 5.95 p.m (1681 cm ), and the aromatic double bond absorbs at 6.25 p.m (1600 cm ) and 6.30 pm (1587 cm ). [Pg.420]

Production of cellulose esters from aromatic acids has not been commercialized because of unfavorable economics. These esters are usually prepared from highly reactive regenerated cellulose, and their physical properties do not differ markedly from cellulose esters prepared from the more readily available aHphatic acids. Benzoate esters have been prepared from regenerated cellulose with benzoyl chloride in pyridine—nitrobenzene (27) or benzene (28). These benzoate esters are soluble in common organic solvents such as acetone or chloroform. Benzoate esters, as well as the nitrochloro-, and methoxy-substituted benzoates, have been prepared from cellulose with the appropriate aromatic acid and chloroacetic anhydride as the impelling agent and magnesium perchlorate as the catalyst (29). [Pg.251]

The impurities present in aromatic nitro compounds depend on the aromatic portion of the molecule. Thus, benzene, phenols or anilines are probable impurities in nitrobenzene, nitrophenols and nitroanilines, respectively. Purification should be carried out accordingly. Isomeric compounds are likely to remain as impurities after the preliminary purifications to remove basic and acidic contaminants. For example, o-nitrophenol may be found in samples ofp-nitrophenol. Usually, the ri-nitro compounds are more steam volatile than the p-nitro isomers, and can be separated in this way. Polynitro impurities in mononitro compounds can be readily removed because of their relatively lower solubilities in solvents. With acidic or basic nitro compounds which cannot be separated in the above manner, advantage may be taken of their differences in pK values (see Chapter 1). The compounds can thus be purified by preliminary extractions with several sets of aqueous buffers... [Pg.67]

Nitric acid, manufacture, 45, 232 Nitric oxide as catalyst, 227 reaction with oxygen, 26 solubility, 20 Nitrobenzene, 344 Nitrogen... [Pg.462]

The solubility of PVN depends on its viscosity (degree of polymerization). The products of low viscosity are entirely sol in all proportions in acet, nitrobenzene and liq nitrate esters. Those of high viscosity are Only partially sol, causing strong coloring of the soln... [Pg.834]

The OH endgroups of hardly soluble polyesters of the PET family can be esterified by excess 3,5-dinitrobenzoic acid in nitrobenzene and back titrated by a solution of NaOH in ethylene glycol418 or derivatized by dichloroacetyl chloride... [Pg.94]

Ti/TiOa electrodes manufactured by impregnating a Ti surface with a soluble Tp compound and subsequent baking in air can be used for reduction processes with Ti " or Ti" species as proposed catalytic intermediates. The usefulness of such electrodes was demonstrated by the reduction of nitrobenzene in 1 M HjSO /CHjOH (1 1)... [Pg.71]

Sulfur pentafluoride derivatives are of considerable industrial interest [15], The solubility of the di(p-nitrophenyl) disulfide in acetonitrile is too low to undergo a similar pathway as given in [GL 9], Therefore, the better soluble trifluorothio-m-nitrobenzene was used, leading to the further fluorination of this substrate to the pentafluoro derivative as given here. [Pg.609]

The organic solvent should feature a low solubility in water and a high dielectric constant. Numerous studies have been reported for liquid-liquid junctions involving DCE [43,62,70,71,73], nitrobenzene [67,68,74,75], and nitrophenyloctylether (NPOE) [56]. Various hydrophobic electrolytes have been employed in these solvents. Tetraphenylarsonium (TPAs+) [[71,75,76], bis-triphenylphosphoranylidene (BTPPA+) [43,50], and hydrophobic tetra-arylammonium [77,78] are among the cations used in the organic phase. The choice for anions has been mostly restricted to borate derivatives, tetraphenylborate (TPB ) [70,79,80], tetrakis(4-chlorophenyl)borate (TPBCH) [43,81,82], and tetrakis(penta-fluoro)phenylborate (TPFB ) [49,83], as well as dicarbollyl-cobaltate [75]. [Pg.199]

This study involved the preparation and characterization of poly(N-phenyl 3,4-dimethylenepyrrolidine) and the subsequent oxidation and reduction of this polymer. The parent polymer was not very soluble, so it was difficult to characterize. However, after oxidizing in the presence of palladium on carbon in nitrobenzene, the resultant poly(N-phenyl 3,4-dimethylenepyrrole) was soluble in several organic solvents. Attempts to reduce the original polymer to the pyrrolidone were unsuccessful. [Pg.127]

In the production of aniline by the hydrogenation of nitrobenzene, the reactor products are separated from unreacted hydrogen in a condenser. The condensate, which is mainly water and aniline, together with a small amount of unreacted nitrobenzene and cyclo-hexylamine, is fed to a decanter to separate the water and aniline. The separation will not be complete, as aniline is slightly soluble in water, and water in aniline. A typical material balance for the decanter is given below ... [Pg.492]

Most of the liquid-liquid interfaces that have been studied involve water and an organic solvent such as nitrobenzene or 1,2-dichloroethane (1,2-DCE). Although these systems form stable interfaces, the solubility of one solvent in the other is usually quite high. For example, the solubility of water in 1,2-DCE is 0.11 M, and that of 1,2-DCE in water is 0.09 M. So each of the two liquid components is a fairly concentrated solution of one solvent in the other. It is therefore unlikely that the interface is sharp on a molecular level. We rather expect an extended region with a thickness of the order of a few solvent diameters, over which the concentrations of the two solvents change rapidly (see Fig. 12.1). The lower the solubility of one solvent in the other, the thinner this interfacial region should be. These expectations are supported by the indication that the dipole potentials at these interfaces seem to be small, at least near the pzc, but spectroscopic information is lacking at present. [Pg.153]

The Suzuki coupling of soluble polyethylene glycol (PEG)-bound bromothiophene 71 and p-formylphenylboronic acid provided biaryl 72 [56]. Due to the high solubilizing power of PEG, the reaction was conducted as a liquid-phase synthesis. Treatment of 72 with o-pyridinediaminc resulted in a two-step-one-pot heterocyclization through an imine intermediate. Nitrobenzene served as an oxidant in the ring closure step. Finally, transesterification with NaOMe in MeOH resulted in l//-imidazole[4,5-e]pyridine 73. [Pg.244]

For quite sparingly soluble substances, formic acid, pyridine, bromobenzene, nitrobenzene, and occasionally also phenol, ethyl benzoate, aniline, and dioxan are used. A distinct relation exists between the constitution of solute and solvent, and is expressed by the old rule similia similibus solvuntur. Thus, as is well known, substances containing hydroxyl (e.g. sugars, carboxylic acids) are soluble in water, whereas hydrocarbons are more soluble in benzene and petrol ether than, for example, in alcohols. [Pg.5]

If a non-volatile solvent, such as glacial acetic acid, xylene, high-boiling petrol ether, or nitrobenzene, has been used for recrystallisation, it is washed out before drying by means of one which is more easily removed, e.g. ether, benzene, petrol. In general a substance which is sparingly soluble in glacial acetic acid or nitrobenzene is so... [Pg.14]

On the Theory of Steam Distillation.—The ideal case occurs when the substance to be distilled is insoluble, or, more accurately, sparingly soluble in water (examples toluene, bromobenzene, nitrobenzene) so that the vapour pressures of water and the substance do not affect each other, or hardly so. The case of substances which are miscible with water (alcohol, acetic acid) is quite different and involves the more complicated theory of fractional distillation. Let us consider the first case only and take as our example bromobenzene, which boils at 155°. If we warm this liquid with water, its vapour pressure will rise in the manner shown by its own vapour pressure curve and independently of that of water. Ebullition will begin when the sum of the vapour pressures of the two substances has become equal to the prevailing atmospheric pressure. This is the case, as we can find from the vapour pressure curves, at 95-25° under a pressure of 760 mm. [Pg.29]

The phthalocyanines, naphthalocyanines, and certain of their metal derivatives (Figure 6.17) are infrared fluorophores. 61"64 As a class, they are exceptionally stable compounds, with copper (Cu) phthalocyanine (not a fluorophore) remaining intact above 300 °C in air. First used for textile dyeing in the last century and still widely used, there is a rich chemistry of phthalocyanines. Most derivatives can be made by prolonged heating of a phthalimide or phthalic acid derivative with a metal in powder or salt form at elevated temperature. Several derivatives absorb in the near-IR, and either fluoresce or phosphoresce. The electronic transitions of phthalocyanines are complex and have been extensively studied, at least in part because the symmetry of the molecule makes theoretical calculations of its spectroscopic behavior more tractable. Unsubstituted phthalocyanines and naphthalocyanines are, as a class, very insoluble in solvents other than, for instance, nitrobenzene. Sulfonated phthalocyanines are water soluble and exhibit spectra comparable to the parent derivative. Photolumines-cent phthalocyanines (Pcs) include SiPc, ZnPc, and PC itself. These compounds have been little used for practical infrared fluorometry to date however, Diatron Corpora-... [Pg.173]

Porous carbon electrodes were used in the field of electrolyte-soluble (p-nitraniline) [34] and electrolyte -insoluble (nitrobenzene) [35] organic cathodic depolarizers. [Pg.362]


See other pages where Solubility nitrobenzene is mentioned: [Pg.144]    [Pg.248]    [Pg.70]    [Pg.86]    [Pg.118]    [Pg.229]    [Pg.52]    [Pg.47]    [Pg.733]    [Pg.124]    [Pg.53]    [Pg.434]    [Pg.9]    [Pg.298]    [Pg.144]    [Pg.131]    [Pg.43]    [Pg.114]    [Pg.118]    [Pg.177]    [Pg.317]    [Pg.344]    [Pg.1352]    [Pg.118]    [Pg.75]    [Pg.272]    [Pg.107]   
See also in sourсe #XX -- [ Pg.292 ]




SEARCH



Nitrobenzene

Nitrobenzene nitrobenzenes

Nitrobenzene solubility parameter

© 2024 chempedia.info