Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soft metals complexation

Abstract. The synthesis of 1,2- and l,3-calix[4]-Z w-crowns, double calix[4]arenes and double calixcrowns have been shown to depend on the reaction conditions (nature of the base, structure of the ditosylates, and the stoichiometry of the reactants). The 1,3-altemate conformation of the 1,3-calix[4]- w-crowns was shown to be favourable to the selective complexation of cesium cation. The observed Na /Cs selectivity was exploited in separation processes using them as carriers in transport through supported liquid membranes (SLMs). The best Na "/Cs selectivity (1/45 000) was observed for the naphthyl derivative 7. Calix(aza)crowns and 1,3-calix[4]-/ w-(aza)-crowns were also produced through the preliminary formation of the Schiff base-calixarenes, which were further hydrogenated. The syntheses consisted of the 1,3-selective alkylation of calixarenes followed by cyclization into a 1,3-bridged calixarene or by the direct 1,3-capping of the calixarene with appropriate ditosylates. Soft metal complexation by these ligands is also presented. [Pg.137]

Key words 1,2- and l,3-Calix[4]-/ w-crowns, double calix[4]arenes, double calixcrowns, cal-ix(aza)crowns, Na "/Cs selectivity, soft metal complexation. [Pg.137]

The possible structures for isothiazoles are discussed in Section 4.01.1, and attention in this chapter will be directed mainly towards the aromatic systems, as defined in Section 4.01.1. The saturated isothiazole 1,1-dioxides (5) are known as sultams, and bicyclic compounds of structure (6) are called isopenems. Isothiazoles readily coordinate to metals (76MI41703, 78MI41701, 79MI41700, 80MI41701). Coordination usually takes place through the nitrogen atom, but sulfur coordination can occur with soft metals such as cadmium or mercury. Some specific coordination complexes are discussed in later sections. [Pg.132]

Like Ag, Au also readily forms linear 2-coordinate complexes such as [AuX2] (X = Cl, Br, I) " and also the technologically important [Au(CN)2] . But it is much more susceptible to oxidation and to disproportionation into Au and Au which renders all its binary compounds, except AuCN, unstable to water. It is also more clearly a class b or soft metal with a preference for the heavier donor atoms P, As and S. Stable, linear complexes are obtained when tertiary phosphines reduce Au in ethanol. [Pg.1196]

The redox behaviour of transition metal complexes with soft ligands. E. Uhlig, Comments Inorg. Chem., 1981,1,169-182 (43). [Pg.47]

Ligands which form stronger complexes with Class (a) metals are described as hard and those which form stronger complexes with Class (b) metals are called soft. Hard metals form more stable complexes with hard ligands and soft metals form more stable complexes with soft ligands. A listing of hard and soft metals and ligands is presented in Table 9-4. [Pg.175]

This review deals with the chemistry and coordination complexes of isoelectronic analogues of common oxo-anions of phosphorus such as PO3, POl", RPOl" and R2POy. The article begins with a discussion of homoleptic systems in which all of the 0x0 ligands are replaced by imido (NR) groups. This is followed by an account of heteroleptic phosphorus-centered anions, including [RN(E)P(/<-NR )2P(E)NR]2-, [EP(NR)3]3-, [RP(E)(NR)2] and [R2P(E)(NR )] (E=0,S, Se, Te). The emphasis is on the wide variety of coordination modes exhibited by these poly-dentate ligands, which have both hard (NR) and soft (S, Se or Te) centers. Possible applications of their metal complexes include new catalytic systems, coordination polymers with unique properties, and novel porous materials. [Pg.143]

The use of chiral transition-metal complexes as catalysts for stereoselective C-C bond forming reactions has developed into a topic of fimdamental importance. The allyhc alkylation is one of the best known of this type of reaction. It allows the Pd-catalyzed substitution of a suitable leaving group in the allylic position by a soft nucleophile. [Pg.81]

In contrast, Fe-Hg-X complexes show little tendency to form halide bridged species and less is known about complexes containing Zn. We first reported the formation of Fe-Si-O-M four membered ring systems with soft metals M = Ag, Rh, Pd, and Pt, and then prepared bimetallic complexes with more oxophilic metals in order to better understand the conditions for the occurrence of this unusual (t-alkoxy-silyl bridging mode. We have expanded our studies on Cd-containing complexes [3b-d] to Group 13 elements and we report here about the synthesis and reactivity of new, stable heterometallic Fe-M (M =... [Pg.199]

The S02 molecule has unshared pairs of electrons on both the sulfur and oxygen atoms. As a result, it forms numerous complexes with transitions metals in which it is known to attach in several ways. These include bonding through the sulfur atom, through an oxygen atom, by both oxygen atoms, and various bridging schemes. In most cases, the complexes involve soft metals in low oxidation states. Another important reaction of sulfur dioxide is known as the insertion reaction, in which it is placed... [Pg.345]

Although the subject of stability of complexes will be discussed in greater detail in Chapter 19 it is appropriate to note here some of the general characteristics of the metal-ligand bond. One of the most relevant principles in this consideration is the hard-soft interaction principle. Metal-ligand bonds are acid-base interactions in the Lewis sense, so the principles discussed in Sections 9.6 and 9.8 apply to these interactions. Soft electron donors in which the donor atom is sulfur or phosphorus form more stable complexes with soft metal ions such as Pt2+ or Ag+, or with metal atoms. Hard electron donors such as H20, NH3( or F generally form stable complexes with hard metal ions like Cr3+ or Co3+. [Pg.582]

It is important to realize that there is a great deal of overlap in the topics covered in this chapter. For example, the chemistry of metal carbonyls is intimately related to metal alkene complexes, because both types of ligands are soft bases and many complexes contain both carbonyl and alkene ligands. Also, both areas are closely associated with catalysis by complexes discussed in Chapter 22, because some of the best-known catalysts are metal carbonyls and they involve reactions of alkenes. Therefore, the separation of topics applied is certainly not a clear one. Catalysis by metal complexes embodies much of the chemistry of both metal carbonyls and metal alkene complexes. [Pg.739]

The structural chemistry of some metal dithiocarbamates, i.e. systematics, coordination modes, crystal packing, and supramolecular self-assembly patterns of nickel, zinc, cadmium, mercury,363 organotin,364 and tellurium,365 366 complexes has been thoroughly analyzed and discussed in detail. Supramolecular self-assembly frequently occurs in non-transition heavier soft metal dithiocarbamates. Thus, lead(II),367 bismuth(III)368 zinc,369 cadmium,370 and (organo)mercury371 dithiocarbamates are associated through M- S secondary bonds, to form either dimeric supermolecules or chain-like supramolecular arrays. The arsenic(III)372 and antimony(III)373 dithiocarbamates are... [Pg.614]

Although this classic picture evolved from "soft, mononuclear transition metal complexes suffices to explain a great deal of carbon monoxide chemistry, it is not clear that it is complete or accurate for understanding processes whereby CO is reduced, deoxygenated, and/or polymerized to form methane, long-chain hydrocarbons, alcohols, and other oxocarbons, especially in cases where heterogeneous catalysts or "hard" metals are involved (6, 7, ,9,J 0). This deficiency of information has led to the search for new modes of carbon monoxide reactivity and to attempts to understand carbon monoxide chemistry in nontraditional environments ... [Pg.59]

Carreira and Kruger reported facile transmetallation of silicon enolates to other soft metal enolates including Gu derivatives.499 They reasoned that the use of soft metal fluoride complexes enabled silyl metal transmetallation with catalytic use of a soft metal source. The concept is illustrated in Scheme 103. Normal Lewis acid-catalyzed reactions of silicon enolates with aldehydes proceed via activation of aldehydes by carbonyl oxygen coordination to Lewis acids, as shown in the upper equation of Scheme 103. A key step for catalytic turnover is the desilyation of 233 by the... [Pg.474]


See other pages where Soft metals complexation is mentioned: [Pg.52]    [Pg.517]    [Pg.43]    [Pg.145]    [Pg.413]    [Pg.517]    [Pg.52]    [Pg.517]    [Pg.43]    [Pg.145]    [Pg.413]    [Pg.517]    [Pg.452]    [Pg.12]    [Pg.39]    [Pg.152]    [Pg.285]    [Pg.120]    [Pg.185]    [Pg.151]    [Pg.194]    [Pg.284]    [Pg.171]    [Pg.7]    [Pg.170]    [Pg.646]    [Pg.936]    [Pg.1034]    [Pg.98]    [Pg.163]    [Pg.56]    [Pg.127]    [Pg.304]    [Pg.458]    [Pg.754]    [Pg.325]    [Pg.326]    [Pg.490]    [Pg.544]    [Pg.70]    [Pg.101]   


SEARCH



Interpretation of the Results to Explain Complex Stability Involving Hard and Soft Metal Ions

Macrocyclic ligands, complexation soft metal ions

Soft metal ions, complexation

Soft metals

© 2024 chempedia.info