Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolysis sodium

The traditional Downs cell for sodium electrolysis was operated at 50 kA in molten CaCl2-NaCl (60-40 wt%) at 580 °C. [Pg.22]

Sodium hydroxide is manufactured by electrolysis of concentrated aqueous sodium chloride the other product of the electrolysis, chlorine, is equally important and hence separation of anode and cathode products is necessary. This is achieved either by a diaphragm (for example in the Hooker electrolytic cell) or by using a mercury cathode which takes up the sodium formed at the cathode as an amalgam (the Kellner-Solvay ceW). The amalgam, after removal from the electrolyte cell, is treated with water to give sodium hydroxide and mercury. The mercury cell is more costly to operate but gives a purer product. [Pg.130]

By the electrolysis of concentrated sodium chloride solution this process was initially used primarily for the production of sodium hydroxide but the demand for chlorine is now so great that the chlorine is a primary and not a by-product. [Pg.317]

By the electrolysis of fused magnesium chloride or fused sodium chloride. [Pg.317]

The aqueous solution of sodium chlorate(I) is an important liquid bleach and disinfectant. It is produced commercially by the electrolysis of cold aqueous sodium chloride, the anode and cathode products being mixed. The sodium chloride remaining in the solution does not usually matter. There is evidence to suggest that iodic(I) acid has some basic character... [Pg.338]

By increasing the molar proportion of the monocarboxylic acid, the yield of (II) is improved. Thus electrolysis of a mixture of decanoic acid (n-decoic acid capric acid) (V) (2 mols) and methyl hydrogen adipate (VI) (1 mol) in anhydrous methanol in the presence of a little sodium methoxide gives, after hydrolysis of the esters formed, n-octadecane (VII), tetradecanoic or myristic acid (VIH) and sebacic acid (IX) ... [Pg.938]

Sebacic acid. Dissolve 40 g. of methyl hydrogen adipate in 100 ml. of absolute methanol to which 01 g. of sodium has been added. Pass a current of about 2 0 amps, until the pH of the solution is about 8 (ca. 5 hours) test with B.D.H. narrow-range indicator paper. Transfer the contents of the electrolysis cell to a 500 ml. round-bottomed flask, render neutral with a little acetic acid, and distil off the methanol on a water... [Pg.939]

Myristic acid from hexanoic acid and methyl hydrogen sebacate). Dissolve 23 -2 g. of redistilled hexanoic acid (re caproic acid), b.p. 204-6-205-5°/760 mm., and 21-6 g. of methyl hydrogen sebacate in 200 ml. of absolute methanol to which 0 13 g. of sodium has been added. Electrolyse at 2 0 amps., whilst maintaining the temperature between 30° and 40°, until the pH is about 8 0 (ca. 6 hours). Neutralise the contents of the electrolysis cell with a little acetic acid and distil off the methyl alcohol on a water bath. Dissolve the residue in 200 ml. of ether, wash with three 50 ml. portions of saturated sodium bicarbonate solution, once with water, dry with anhydrous magnesium sulphate, and distil with the aid of a fractionating column (see under Methyl hydrogen adipate). Collect the re-decane at 60°/10 mm. (3 0 g.), the methyl myristate at 158-160°/ 10 mm. (12 5g.) and dimethyl hexadecane-1 16-dicarboxylate at 215-230°/ 7 mm. (1 -5 g.)... [Pg.940]

English, soda Medieval Latin, sodanum, headache remedy) Long recognized in compounds, sodium was first isolated by Davy in 1807 by electrolysis of caustic soda. [Pg.27]

It is now obtained commercially by the electrolysis of absolutely dry fused sodium chloride. This method is much cheaper than that of electrolyzing sodium hydroxide, as was used several years ago. [Pg.27]

The method of obtaining aluminum metal by the electrolysis of alumina dissolved in cryolite was discovered in 1886 by Hall in the U.S. and at about the same time by Heroult in France. Cryolite, a natural ore found in Greenland, is no longer widely used in commercial production, but has been replaced by an artificial mixture of sodium, aluminum, and calcium fluorides. [Pg.31]

Separation of tantalum from niobium requires several complicated steps. Several methods are used to commercially produce the element, including electrolysis of molten potassium fluorotantalate, reduction of potassium fluorotantalate with sodium, or reacting tantalum carbide with tantalum oxide. Twenty five isotopes of tantalum are known to exist. Natural tantalum contains two isotopes. [Pg.132]

Several methods are available for producing thorium metal it can be obtained by reducing thorium oxide with calcium, by electrolysis of anhydrous thorium chloride in a fused mixture of sodium and potassium chlorides, by calcium reduction of thorium tetrachloride mixed with... [Pg.174]

In a related process, 1,4-dichlorobutene was produced by direct vapor-phase chlorination of butadiene at 160—250°C. The 1,4-dichlorobutenes reacted with aqueous sodium cyanide in the presence of copper catalysts to produce the isomeric 1,4-dicyanobutenes yields were as high as 95% (58). The by-product NaCl could be recovered for reconversion to Na and CI2 via electrolysis. Adiponitrile was produced by the hydrogenation of the dicyanobutenes over a palladium catalyst in either the vapor phase or the Hquid phase (59,60). The yield in either case was 95% or better. This process is no longer practiced by DuPont in favor of the more economically attractive process described below. [Pg.220]

Chlorine and caustic soda are coproducts of electrolysis of aqueous solutions of sodium chloride [7647-14-5] NaCl, (commonly called brine) following the overall chemical reaction... [Pg.481]

Chloiine is pioduced at the anode in each of the three types of electrolytic cells. The cathodic reaction in diaphragm and membrane cells is the electrolysis of water to generate as indicated, whereas the cathodic reaction in mercury cells is the discharge of sodium ion, Na, to form dilute sodium amalgam. [Pg.482]

Sodium hydroxide brine electrolysis lime-sodium carbonate reaction (not presently used)... [Pg.512]

Caustic Soda. Diaphragm cell caustic is commercially purified by the DH process or the ammonia extraction method offered by PPG and OxyTech (see Fig. 38), essentially involving Hquid—Hquid extraction to reduce the salt and sodium chlorate content (86). Thus 50% caustic comes in contact with ammonia in a countercurrent fashion at 60°C and up to 2500 kPa (25 atm) pressure, the Hquid NH absorbing salt, chlorate, carbonate, water, and some caustic. The overflow from the reactor is stripped of NH, which is then concentrated and returned to the extraction process. The product, about 62% NaOH and devoid of impurities, is stripped free of NH, which is concentrated and recirculated. MetaUic impurities can be reduced to low concentrations by electrolysis employing porous cathodes. The caustic is then freed of Fe, Ni, Pb, and Cu ions, which are deposited on the cathode. [Pg.515]

Significant amounts of cryoHte are also recovered from waste material ia the manufacture of aluminum. The carbon lining of the electrolysis ceUs, which may contain 10—30% by weight of cryoHte, is extracted with sodium hydroxide or sodium carbonate solution and the cryoHte precipitated with carbon dioxide (28). Gases from operating ceUs containing HF, CO2, and fluorine-containing dusts may be used for the carbonation (29). [Pg.144]

Electrolysis. GalHum can be extracted by direct electrolysis of the aluminate solution at a strongly agitated mercury cathode. The recovery from a sodium gallate solution resulting from the carbonation process is another possibiHty. This process is probably no longer operative because of the environmental problems associated with the mercury. [Pg.160]

Other recovery methods have been used (10). These include leaching ores and concentrates using sodium sulfide [1313-82-2] and sodium hydroxide [1310-73-2] and subsequentiy precipitating with aluminum [7429-90-3], or by electrolysis (11). In another process, the mercury in the ore is dissolved by a sodium hypochlorite [7681-52-9] solution, the mercury-laden solution is then passed through activated carbon [7440-44-0] to absorb the mercury, and the activated carbon heated to produce mercury metal. Mercury can be extracted from cinnabar by electrooxidation (12,13). [Pg.107]

Mercury layers plated onto the surface of analytical electrodes serve as Hquid metal coatings. These function as analytical sensors (qv) because sodium and other metals can be electroplated into the amalgam, then deplated and measured (see Electro analytical techniques). This is one of the few ways that sodium, potassium, calcium, and other active metals can be electroplated from aqueous solution. In one modification of this technique, a Hquid sample can be purified of trace metals by extended electrolysis in the presence of a mercury coating (35). [Pg.134]

Other Metals. AH the sodium metal produced comes from electrolysis of sodium chloride melts in Downs ceUs. The ceU consists of a cylindrical steel cathode separated from the graphite anode by a perforated steel diaphragm. Lithium is also produced by electrolysis of the chloride in a process similar to that used for sodium. The other alkaH and alkaHne-earth metals can be electrowon from molten chlorides, but thermochemical reduction is preferred commercially. The rare earths can also be electrowon but only the mixture known as mischmetal is prepared in tonnage quantity by electrochemical means. In addition, beryIHum and boron are produced by electrolysis on a commercial scale in the order of a few hundred t/yr. Processes have been developed for electrowinning titanium, tantalum, and niobium from molten salts. These metals, however, are obtained as a powdery deposit which is not easily separated from the electrolyte so that further purification is required. [Pg.175]


See other pages where Electrolysis sodium is mentioned: [Pg.207]    [Pg.226]    [Pg.207]    [Pg.207]    [Pg.226]    [Pg.207]    [Pg.362]    [Pg.363]    [Pg.363]    [Pg.364]    [Pg.122]    [Pg.133]    [Pg.149]    [Pg.938]    [Pg.941]    [Pg.482]    [Pg.488]    [Pg.252]    [Pg.167]    [Pg.308]    [Pg.316]    [Pg.389]    [Pg.472]    [Pg.366]    [Pg.544]    [Pg.224]    [Pg.306]    [Pg.310]    [Pg.120]    [Pg.169]   
See also in sourсe #XX -- [ Pg.368 ]

See also in sourсe #XX -- [ Pg.368 ]

See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Electrolysis of an aqueous sodium chloride solution

Electrolysis of aqueous sodium chlorid

Electrolysis of aqueous sodium chloride

Electrolysis of molten sodium chloride

Electrolysis of sodium chloride

Electrolysis of sodium chloride solutions

Electrolysis of sodium hydroxide

Electrolysis of sodium sulfate

Electrolysis sodium chloride

Ethyl sodium electrolysis

Molten sodium chloride, electrolysis

Sodium chloride electrolysis of aqueous solution

Sodium chloride solution electrolysis

Sodium from electrolysis

Sodium hydroxide electrolysis

Sodium iodide solution, electrolysis

Sodium methoxide in Kolbe electrolysis

Sodium sulfate electrolysis

The Electrolysis of Aqueous Sodium Chloride

The Electrolysis of Aqueous Sodium Sulfate

© 2024 chempedia.info