Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porous cathode

Cathode Porous Pt Stabilized Zr02 impregnated with praesodymium oxide and covered with SnO doped In203 Doped lanthanum manganite Extrusion, sintering 2 mm thickness 11 X 10 cm/cm°C expansion from room temperature to 1000°C 30-40% porosity... [Pg.175]

The catalysts and electrode materials used in PAFCs are also similar to those in acidic H2/air fuel cells. Carbon-supported Pt is used as the catalyst at both anode and cathode, porous carbon paper serves as the electrode substrate, and graphite carbon forms the bipolar plates. Since a liquid electrolyte is used, an efficient water removal system is extremely important. Otherwise, the liquid electrolyte is easily lost with the removed water. An electrolyte matrix is needed to support the liquid phosphoric acid. In general, a Teflon -bonded silicon carbide is used as the matrix. [Pg.13]

Cathodes (porous W impregnated with Ba aluminate). Coiled cathodes for laser resonators are shown in Fig. 111. [Pg.304]

Selective cathode Porous membrane Nation Selective cathode... [Pg.18]

A bench-scale steam electrolyser was fabricated and pure hydrogen gas extracted at the rate of a few litres per hour . Fig. 34.6 represents the cross section of the cell which contains a one-end-closed ceramic tube made of SeCeo.95Ybo.05O3-a (inside diameter 12-14 mm, thickness 1-1.5 mm, length 35-150 mm). As a cathode, porous platinum was baked on the inner side of the tube, and, as an anode, porous palladium was attached to the outer side of the tube. Four cells could be accommodated in a cell furnace and connected electrically either in series or in parallel. Steam... [Pg.517]

Caustic Soda. Diaphragm cell caustic is commercially purified by the DH process or the ammonia extraction method offered by PPG and OxyTech (see Fig. 38), essentially involving Hquid—Hquid extraction to reduce the salt and sodium chlorate content (86). Thus 50% caustic comes in contact with ammonia in a countercurrent fashion at 60°C and up to 2500 kPa (25 atm) pressure, the Hquid NH absorbing salt, chlorate, carbonate, water, and some caustic. The overflow from the reactor is stripped of NH, which is then concentrated and returned to the extraction process. The product, about 62% NaOH and devoid of impurities, is stripped free of NH, which is concentrated and recirculated. MetaUic impurities can be reduced to low concentrations by electrolysis employing porous cathodes. The caustic is then freed of Fe, Ni, Pb, and Cu ions, which are deposited on the cathode. [Pg.515]

Other Cell Designs. Although not used in the United States, another important cell is based on designs developed by ICl (90). Cells of this type are used by British Nuclear Fuels pic and differ from the cells shown in Figures 2 and 3 in two ways (/) the anodes used are made of the same hard, nongraphitized carbon, but are more porous and 2) the cathodes are formed from coiled tubes and provide additional cooling (91). [Pg.127]

In some cases, particularly with iaactive metals, electrolytic cells are the primary method of manufacture of the fluoroborate solution. The manufacture of Sn, Pb, Cu, and Ni fluoroborates by electrolytic dissolution (87,88) is patented. A typical cell for continous production consists of a polyethylene-lined tank with tin anodes at the bottom and a mercury pool (ia a porous basket) cathode near the top (88). Pluoroboric acid is added to the cell and electrolysis is begun. As tin fluoroborate is generated, differences ia specific gravity cause the product to layer at the bottom of the cell. When the desired concentration is reached ia this layer, the heavy solution is drawn from the bottom and fresh HBP is added to the top of the cell continuously. The direct reaction of tin with HBP is slow but can be accelerated by passiag air or oxygen through the solution (89). The stannic fluoroborate is reduced by reaction with mossy tin under an iaert atmosphere. In earlier procedures, HBP reacted with hydrated stannous oxide. [Pg.168]

Fluorocarbons are made commercially also by the electrolysis of hydrocarbons in anhydrous hydrogen fluoride (Simons process) (14). Nickel anodes and nickel or steel cathodes are used. Special porous anodes improve the yields. This method is limited to starting materials that are appreciably soluble in hydrogen fluoride, and is most useflil for manufacturing perfluoroalkyl carboxyflc and sulfonic acids, and tertiary amines. For volatile materials with tittle solubility in hydrofluoric acid, a complementary method that uses porous carbon anodes and HF 2KF electrolyte (Phillips process) is useflil (14). [Pg.283]

The porous electrodes in PEFCs are bonded to the surface of the ion-exchange membranes which are 0.12- to 0.25-mm thick by pressure and at a temperature usually between the glass-transition temperature and the thermal degradation temperature of the membrane. These conditions provide the necessary environment to produce an intimate contact between the electrocatalyst and the membrane surface. The early PEFCs contained Nafton membranes and about 4 mg/cm of Pt black in both the cathode and anode. Such electrode/membrane combinations, using the appropriate current coUectors and supporting stmcture in PEFCs and water electrolysis ceUs, are capable of operating at pressures up to 20.7 MPa (3000 psi), differential pressures up to 3.5 MPa (500 psi), and current densities of 2000 m A/cm. ... [Pg.578]

Phosphoric Acid Fuel Cell. Concentrated phosphoric acid is used for the electrolyte ia PAFC, which operates at 150 to 220°C. At lower temperatures, phosphoric acid is a poor ionic conductor (see Phosphoric acid and the phosphates), and CO poisoning of the Pt electrocatalyst ia the anode becomes more severe when steam-reformed hydrocarbons (qv) are used as the hydrogen-rich fuel. The relative stabiUty of concentrated phosphoric acid is high compared to other common inorganic acids consequentiy, the PAFC is capable of operating at elevated temperatures. In addition, the use of concentrated (- 100%) acid minimizes the water-vapor pressure so water management ia the cell is not difficult. The porous matrix used to retain the acid is usually sihcon carbide SiC, and the electrocatalyst ia both the anode and cathode is mainly Pt. [Pg.579]

An electrolytic cell, preferably having anode and cathode compartments separated by a porous membrane to prevent formation of explosive gas mixtures, is required (27). [Pg.180]

When a battery produces current, the sites of current production are not uniformly distributed on the electrodes (45). The nonuniform current distribution lowers the expected performance from a battery system, and causes excessive heat evolution and low utilization of active materials. Two types of current distribution, primary and secondary, can be distinguished. The primary distribution is related to the current production based on the geometric surface area of the battery constmction. Secondary current distribution is related to current production sites inside the porous electrode itself. Most practical battery constmctions have nonuniform current distribution across the surface of the electrodes. This primary current distribution is governed by geometric factors such as height (or length) of the electrodes, the distance between the electrodes, the resistance of the anode and cathode stmctures by the resistance of the electrolyte and by the polarization resistance or hinderance of the electrode reaction processes. [Pg.514]

Electrochemical Generation of Chlorine Dioxide from Chlorite. The electrochemical oxidation of sodium chlorite is an old, but not weU-known method of generating chlorine dioxide. Concentrated aqueous sodium chlorite, with or without added conductive salts, is oxidized at the anode of an electrolytic cell having a porous diaphragm-type separator between the anode and cathode compartments (122—127). The anodic reaction is... [Pg.487]

Diaphrag m Cell Technology. Diaphragm cells feature a porous diaphragm that separates anode and cathode compartments of the cell. Diaphragms should provide resistance to Hquid flow, requite minimum space between anode and cathode, produce minimum electrical resistance, and be durable. At the anode, which is generally a DSA, chloride ions are oxidized to chlorine (see eq. 1) and at the cathode, which is usually a woven steel wine mesh, water is reduced to hydrogen. [Pg.75]


See other pages where Porous cathode is mentioned: [Pg.207]    [Pg.218]    [Pg.190]    [Pg.180]    [Pg.324]    [Pg.736]    [Pg.374]    [Pg.841]    [Pg.218]    [Pg.420]    [Pg.391]    [Pg.207]    [Pg.218]    [Pg.190]    [Pg.180]    [Pg.324]    [Pg.736]    [Pg.374]    [Pg.841]    [Pg.218]    [Pg.420]    [Pg.391]    [Pg.501]    [Pg.493]    [Pg.579]    [Pg.579]    [Pg.579]    [Pg.581]    [Pg.584]    [Pg.477]    [Pg.224]    [Pg.3]    [Pg.3]    [Pg.10]    [Pg.18]    [Pg.536]    [Pg.536]    [Pg.537]    [Pg.123]    [Pg.349]    [Pg.73]    [Pg.79]    [Pg.103]    [Pg.156]    [Pg.2409]    [Pg.2413]   
See also in sourсe #XX -- [ Pg.98 , Pg.99 ]




SEARCH



© 2024 chempedia.info