Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium dodecyl sulfate, effect

Shifts in the SEC fractionation range are not new. It has been known for decades that adding chaotropes to mobile phases causes proteins to elute as if they were much larger molecules. Sodium dodecyl sulfate (SDS) (9) and guanidinium hydrochloride (Gd.HCl) (9-12) have been used for this purpose. It has not been clearly determined in every case if these shifts reflect effects of the chaotropes on the solutes or on the stationary phase. Proteins are denatured by chaotropes the loss of tertiary structure increases their hydrodynamic radius. However, a similar shift in elution times has been observed with SEC of peptides in 0.1% trifluoroacetic acid (TEA) (13-15) or 0.1 M formic acid (16), even if they were too small to have significant tertiary structure. Speculation as to the cause involved solvation effects that decreased the effective pore size of the... [Pg.252]

If the coupling component is not ionic, however, more dramatic effects occur, as found by Hashida et al. (1979) and by Tentorio et al. (1985). Hashida used N,N-bis(2-hydroxyethyl)aniline, while Tentorio and coworkers took 1-naphthylamine and l-amino-2-methylnaphthalene as coupling components. With cationic arenediazo-nium salts and addition of sodium dodecyl sulfate (SDS), rate increases up to 1100-fold were measured in cases where the surfactant concentration was higher than the critical micelle concentration (cmc). Under the same conditions the reaction... [Pg.376]

The influence of the presence of alcohols on the CMC is also well known. In 1943 Miles and Shedlovsky [117] studied the effect of dodecanol on the surface tension of solutions of sodium dodecyl sulfate detecting a significant decrease of the surface tension and a displacement of the CMC toward lower surfactant concentrations. Schwuger studied the influence of different alcohols, such as hexanol, octanol, and decanol, on the surface tension of sodium hexa-decyl sulfate [118]. The effect of dodecyl alcohol on the surface tension, CMC, and adsorption behavior of sodium dodecyl sulfate was studied in detail by Batina et al. [119]. [Pg.250]

The effects of pH on electrokinetic velocities in micellar electrokinetic chromatography was studied by using sodium dodecyl sulfate solutions [179]. Micellar electrokinetic capillary chromatography with a sodium dodecyl sulfate pseudostationary phase has been used to determine the partition constants for nitrophenols, thiazolylazo dyes, and metal chelate compounds [180]. A similar technique was used to separate hydroquinone and some of its ether derivatives. This analysis is suitable for the determination of hydroquinone in skin-toning creams [181]. The ingredients of antipyretic analgesic preparations have also been determined by this technique [182], The addition of sodium dodecyl sulfate improves the peak shapes and resolution in chiral separations by micellar electrokinetic chromatography [183]. [Pg.274]

Similarly to quantitative determination of high surfactant concentrations, many alternative methods have been proposed for the quantitative determination of low surfactant concentrations. Tsuji et al. [270] developed a potentio-metric method for the microdetermination of anionic surfactants that was applied to the analysis of 5-100 ppm of sodium dodecyl sulfate and 1-10 ppm of sodium dodecyl ether (2.9 EO) sulfate. This method is based on the inhibitory effect of anionic surfactants on the enzyme system cholinesterase-butyryl-thiocholine iodide. A constant current is applied across two platinum plate electrodes immersed in a solution containing butyrylthiocholine and surfactant. Since cholinesterase produces enzymatic hydrolysis of the substrate, the decrease in the initial velocity of the hydrolysis caused by the surfactant corresponds to its concentration. Amounts up to 60 pg of alcohol sulfate can be spectrometrically determined with acridine orange by extraction of the ion pair with a mixture 3 1 (v/v) of benzene/methyl isobutyl ketone [271]. [Pg.282]

Contact of surfactants with the skin and mucus membranes occurs either accidentally or as a consequence of normal use. Examples of this normal and everyday use are cleaning formulations, shampoos, foam baths, and toothpastes. Again this contact is seldom made with individual surfactants, in this case alcohol sulfates and alcohol ether sulfates, but through formulated products. It is known that surfactants present significant interactions, so that mixed systems are generally less aggressive than their individual components. However, the effect of pure surfactants merits attention, particularly sodium dodecyl sulfate, which is commonly used as a reference for many studies because of its high purity and availability. [Pg.289]

In an extensive study by Read et al. [93], 10 anionic surfactants were evaluated for their ability to remove pyritic sulfur and ash from ultrafine Illinois no. 5 coal by flotation processes. The authors observed that of the commercially available surfactants, sodium dodecyl sulfate was the most effective on either a weight or a molar basis, followed by a linear AOS (average molweight 272) and alkylpolyethoxylated sulfonates. Of the noncommercial surfactants tested, -(E -b-dodecene-b-suIfonate (f0) was the most effective and better than any commercial surfactant on a dosage/recovery basis. [Pg.429]

Increased removal of phenanthrene from soil columns spiked with the rhamnolipid mixture synthesized by Pseudomonas aeruginosa UG2 has been demonstrated, and shown to depend both on the increased desorption of the substrate and on partitioning into micelles (Noordman et al. 1998). However, the addition of the biosurfactant from the same strain of Pseudomonas aeruginosa UG2 or of sodium dodecyl sulfate had no effect on the rate of biodegradation of anthracene and phenanthrene from a chronically contaminated soil. [Pg.650]

A. Gerstner, Z. Csapo, M. Sasvari-Szekely, and A. Guttman, Ultrathin sodium dodecyl sulfate gel electrophoresis of proteins Effect of gel composition and temperature on the separation of sodium dodecyl sulfate-protein complexes, Electrophoresis, 21, 834 (2000). [Pg.718]

Wash particles (e.g., 100 mg of 1 pm carboxylated latex beads) into coupling buffer (i.e., 50 mM MES, pH 6.0 or 50 mM sodium phosphate, pH 7.2 buffers with pH values from pH 4.5 -7.5 may be used with success however, as the pH increases the reaction rate will decrease). Suspend the particles in 5 ml coupling buffer. The addition of a dilute detergent solution may be done to increase particle stability (e.g., final concentration of 0.01 percent sodium dodecyl sulfate (SDS)). Avoid the addition of any components containing carboxylates or amines (such as acetate, glycine, Tris, imidazole, etc.). Also, avoid the presence of thiols (e.g., dithiothreitol (DTT), 2-mercaptoethanol, etc.), as these will react with EDC and effectively inactivate it. [Pg.598]

Typical examples of adsorption isotherms of sodium dodecyl sulfate onto different surfaces are shown in Fig. 4.2 [41]. Fig. 4.2 also demonstrates the effect of the... [Pg.95]

Pittz EP, Abraham R, Rourke D, et al. 1978. Effect of oral administration to mice of 30 ppm of mirex on the sodium dodecyl sulfate polyacrylamide gel electrophorectic patterns of hepatic microsomal proteins. Toxicol Appl Pharmacol 45(1) 335-336. [Pg.279]

Nicolazzo JA, Reed BL, Finnin BC (2004a) Assessment of the effects of sodium dodecyl sulfate on the buccal permeability of caffeine and estradiol. J Pharm Sci 93 431-440... [Pg.107]

Lloyd, D. K., and Watzig, H. (1995). Sodium dodecyl sulfate solution is an effective between-run... [Pg.144]

In the case of sodium dodecyl sulfate, there is no corresponding effect. This thickening is at any rate not associated with the formation of the middle phase since the products remain isotropic. However, x-ray diffraction measurements indicate the presence of a crystalline, randomly oriented phase (39). It is still... [Pg.17]


See other pages where Sodium dodecyl sulfate, effect is mentioned: [Pg.449]    [Pg.46]    [Pg.181]    [Pg.411]    [Pg.198]    [Pg.80]    [Pg.257]    [Pg.539]    [Pg.210]    [Pg.650]    [Pg.777]    [Pg.125]    [Pg.328]    [Pg.349]    [Pg.200]    [Pg.154]    [Pg.163]    [Pg.614]    [Pg.228]    [Pg.579]    [Pg.861]    [Pg.101]    [Pg.126]    [Pg.165]    [Pg.35]    [Pg.157]    [Pg.266]    [Pg.482]   


SEARCH



Sodium 1 dodecyl sulfate

Sodium dodecyl sulfate, effect residues

Sodium sulfate

Sulfate effect

© 2024 chempedia.info