Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Similarity scavengers

The acylation of benzylamine with 4-chlorobenzoyl chloride served as a model reaction to evaluate the efficacy of both of these resins. After removal of both protons and amines the corresponding amide was obtained in 77% yield contaminated with less than 1% benzylamine and acid chloride. The transformation was also performed with commercially available scavenger resins PS-NCO and/or PS-NMM to obtain comparable results, but only approximately half the mass and volume of dendronized resin was required to achieve similar scavenging efficiency. [Pg.330]

The most commonly used protected derivatives of aldehydes and ketones are 1,3-dioxolanes and 1,3-oxathiolanes. They are obtained from the carbonyl compounds and 1,2-ethanediol or 2-mercaptoethanol, respectively, in aprotic solvents and in the presence of catalysts, e.g. BF, (L.F. Fieser, 1954 G.E. Wilson, Jr., 1968), and water scavengers, e.g. orthoesters (P. Doyle. 1965). Acid-catalyzed exchange dioxolanation with dioxolanes of low boiling ketones, e.g. acetone, which are distilled during the reaction, can also be applied (H. J. Dauben, Jr., 1954). Selective monoketalization of diketones is often used with good success (C. Mercier, 1973). Even from diketones with two keto groups of very similar reactivity monoketals may be obtained by repeated acid-catalyzed equilibration (W.S. Johnson, 1962 A.G. Hortmann, 1969). Most aldehydes are easily converted into acetals. The ketalization of ketones is more difficult for sterical reasons and often requires long reaction times at elevated temperatures. a, -Unsaturated ketones react more slowly than saturated ketones. 2-Mercaptoethanol is more reactive than 1,2-ethanediol (J. Romo, 1951 C. Djerassi, 1952 G.E. Wilson, Jr., 1968). [Pg.165]

Oxygen scavengers other than hydrazine are also used, especially catalyzed sodium sulfite, which reacts rapidly with oxygen even at room temperatures to form sodium sulfate. Catalyzed hydrazine formulations are now commercially available that react with oxygen at ambient temperatures at rates comparable to catalyzed sulfite (189). At elevated temperatures, the reaction rates are all similar. Table 14 Hsts the standard hydrazine solution products offered by Olin Corp. for sale to the water-treatment market. Other concentrations are available and other companies offer similar products. [Pg.290]

Several theories have appeared in the Hterature regarding the mechanism of protection by -PDA antiozonants. The scavenger theory states that the antiozonant diffuses to the surface and preferentially reacts with ozone, with the result that the mbber is not attacked until the antiozonant is exhausted (25,28,29). The protective film theory is similar, except that the ozone—antiozonant reaction products form a film on the surface that prevents attack (28). The relinking theory states that the antiozonant prevents scission of the ozonized mbber or recombines severed double bonds (14). A fourth theory states that the antiozonant reacts with the ozonized mbber or carbonyl oxide (3) in Pig. 1) to give a low molecular weight, inert self-healing film on the surface (3). [Pg.237]

Chloroaluminate laboratory preparations proved to be easily extrapolated to large scale. These chloroaluminate salts are corrosive liquids in the presence of protons. When exposed to moisture, they produce hydrochloric acid, similarly to aluminium chloride. However, this can be avoided by the addition of some proton scavenger such as alkylaluminium derivatives. In Difasol technology, for example, carbon-steel reactors can be used with no corrosion problem. [Pg.278]

The pre-boiler, FW supply should normally be of demineralized quality, such as may be provided by ion exchange, reverse osmosis (RO), or similar process. Extremely efficient mechanical deaeration also is required because the path length from the FW tank to the boiler is usually quite short, and thus the contact time is generally inadequate for the sole use of chemical oxygen scavengers (even catalyzed scavengers). [Pg.49]

The hydrolysis products of the hydrolyzable tannins are not dissimilar to some of the novel oxygen scavengers developed to replace hydrazine. Oxygen reaction rates and application rates are also similar. The oxygen reaction time for tannin blends varies with pH levels and temperature but at 45 °C (113 °F) is on the order of 75% complete within 5 seconds and 90% complete within 10 seconds. [Pg.408]

For HW, LP steam, and many lower pressure industrial operations, sulfite or sulfite derivatives have proved to be excellent scavengers and suitably cost-effective, provided the MU requirements are not too high and FW temperatures not too low. Alternatively, tannin-based products provide a similar degree of effectiveness without the contribution to TDS and, in practice, almost irrespective of FW oxygen content. [Pg.483]

Similarly, when catalyzed the reaction rate decreases significantly as a function of pH level. The optimum reaction pH level is approximately 9.5 to 10.5. Iron, and especially copper, in the boiler may act as adventitious catalysts. However, as metal transport polymers are frequently employed, iron, copper, or cobalt may be transported away from contact with sulfite, and thus are not available for catalysis. (This may be a serious problem in high-pressure units employing combinations of organic oxygen scavengers and metal ion catalysts.)... [Pg.485]

Where copper corrosion occurs, the problem usually can be traced back to an excess feed of hydrazine, DEHA, or similar product, coupled with inadequate post-boiler oxygen scavenging. [Pg.496]

There is nothing particularly special about the product except its feed rate, which is fairly low in comparison to some of the other novel oxygen scavengers. It exhibits passivation characteristics (forming magnetite in a way similar to hydrazine), coupled with good corrosion and iron transport control. [Pg.504]

The most radiation-stable poly(olefin sulfone) is polyethylene sulfone) and the most radiation-sensitive is poly(cyclohexene sulfone). In the case of poly(3-methyl-l-butene sulfone) there is very much isomerization of the olefin formed by radiolysis and only 58.5% of the olefin formed is 3-methyl-l-butene. The main isomerization product is 2-methyl-2-butene (37.3% of the olefin). Similar isomerization, though to a smaller extent, occurs in poly(l-butene sulfone) where about 10% of 2-butene is formed. The formation of the olefin isomer may occur partly by radiation-induced isomerization of the initial olefin, but studies with added scavengers73 do not support this as the major source of the isomers. The presence of a cation scavenger, triethylamine, eliminates the formation of the isomer of the parent olefin in both cases of poly(l-butene sulfone) and poly(3-methyl-1-butene sulfone)73 indicating that the isomerization of the olefin occurred mainly by a cationic mechanism, as suggested previously72. [Pg.918]


See other pages where Similarity scavengers is mentioned: [Pg.463]    [Pg.5]    [Pg.295]    [Pg.248]    [Pg.496]    [Pg.463]    [Pg.5]    [Pg.295]    [Pg.248]    [Pg.496]    [Pg.371]    [Pg.551]    [Pg.395]    [Pg.247]    [Pg.488]    [Pg.492]    [Pg.226]    [Pg.124]    [Pg.50]    [Pg.895]    [Pg.242]    [Pg.720]    [Pg.342]    [Pg.276]    [Pg.131]    [Pg.422]    [Pg.264]    [Pg.401]    [Pg.893]    [Pg.902]    [Pg.903]    [Pg.253]    [Pg.81]    [Pg.89]    [Pg.140]    [Pg.150]    [Pg.439]    [Pg.173]    [Pg.139]    [Pg.169]    [Pg.25]    [Pg.28]    [Pg.90]    [Pg.103]   
See also in sourсe #XX -- [ Pg.351 , Pg.372 , Pg.374 , Pg.381 , Pg.395 ]




SEARCH



© 2024 chempedia.info