Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silylenes 1,3-butadiene

Conlin148 also studied the pyrolysis of 1-methyl-1-silacyclobutane in the presence of excess butadiene at various temperatures where the decomposition followed first-order kinetics and where the silene isomerized to the isomeric silylene prior to reacting with the butadiene. The value for the preexponential factor A for the silene-to-silylene isomerization was found to be 9.6 0.2 s-1 and the Ewl for the isomerization was 30.4 kcal mol-1 with A// = 28.9 0.7 kcal mol-1 and AS = -18.5 0.9 cal mol-1 deg. More recently, the photochemical ring opening of l,l-dimethyl-2-phenylcyclobut-3-ene and its recyclization was studied. The Eact for cycli-zation was 9.4 kcal mol-1.113... [Pg.92]

In accord with the proposed mechanism, copyrolyses of la or lb with 2,3-dimethyl-1,3-butadiene (DMB) or isoprene lead to silacyclopentene derivatives via a formal [4+1] cycloaddition of the silylenes (Scheme 2). The simultaneous existence of the silaethenes 2a/2b and the resulting silylenes 4a/4b in the gas phase is proven by the formation of the corresponding 1,3-disilacyclobutanes (5) and - in case of isoprene as the quenching partner - of the two isomeric silacyclohexenes 7 (Scheme 2) [2]. [Pg.119]

Corriu et al. have reported that the coupling reaction of 2-(iV,iV-dimethylaminomethyl)phenyllithium with (McvSi)vSiCI 53 affords 2-(iV,iV-dimethylaminomethyl)-l-[tris(trimethylsilyl)silyl]benzene 894. No evidence has been found that the intramolecular iV-ligand coordinates to the silicon atom of 894. Upon UV irradiation, the trisilane forms a transient silyene 895, which has been trapped with 2,3-dimethyl-2,3-butadiene and triethylsilane to give the oligosilanes 896 and 897 as well as 898-900, (Scheme 126).859 Apparently, the bulk on the two ligands is insufficient to provide kinetic stabilization of the silylene intermediate 895. [Pg.492]

Silylated triphosphanes and triphosphides, synthesis, 31 188-194 yields, 31 194 Silylenes, 29 2-6 addition reactions, 29 4-6 to butadiene, 29 4 to ethylene, 29 4 to hexadienes, 29 5 mechanism, 29 4 nitric oxide scavenging, 29 4 complexes, 25 37, 51, 116, 118 as catalyst intermediates, 25 118 extrusion from disilanes, 25 114, 118 halides, 3 225 from hydridosilanes, 25 14 insertion into element-hydrogen bonds, 29 3-4... [Pg.277]

The mechanism of the photochemical degradation of catenated silicon derivatives has received considerable attention (25). Substituted cyclic derivatives photochemically extrude a silylene fragment which can be intercepted by appropriate trapping reagents (e.g., trialkylsilanes or 2,3-dimethyl butadiene). This extrusion results in the formation of the corresponding ring contracted cyclopolysilane. The process continues upon additional irradiation until a cyclotetrasilane results which then undergoes... [Pg.302]

Corriu et al.29 generated a transient silylene by the irradiation of trisilane 24 (Scheme 22). Photolysis in the presence of 2,3-dimethyl-l,3-butadiene... [Pg.27]

Tamao et al,83 found that a higher coordinated silylene 119 can be formed from penta-coordinated silane 118 (Scheme 31). Warming a solution of 118 in toluene or dimethylformamide in the presence of diphenylacetylene or 2,3-dimethyl-l,3-butadiene resulted in the formation of silylene-trapping products 120 and 121. Interestingly, no 1 1 reaction product between the silylene and the acetylene was isolated. Thus, it must be concluded that the insertion of silylene 119 into a Si-C bond of initially formed silacyclopro-pene is faster than the addition to the triple bond of the acetylene so that the silacyclopropene cannot be isolated under the reaction conditions. [Pg.36]

Conlin and coworkers photolyzed vinyltris(trimethylsilyl)silane 188 in the presence of a variety of trapping reagents such as butadiene, substituted butadienes or silanes and observed products derived from intermediate silenes 189 (formed by rearrangement) or from silylenes 190 resulting from elimination of hexamethyldisilane93. In some cases complex mixtures of products which could have been derived from intermediate silyl radicals were also observed. The reaction products formed from the silene and the silylene in the presence of butadiene, 191 and 192 respectively, are shown in Scheme 32. [Pg.1266]

A key report investigated a variety of substrates in their reaction with silicon in an effort to find evidence for silylene intermediates during the silicon direct process reaction. When silicon, copper and methanol were reacted as described above but in the presence of alkenes, alkyldimethoxysilanes and (MeO SiH were formed95-97. The use of allyl propyl ether instead of alkenes gave allyldimethoxysilane, with 38% selectivity. These results and the reaction of silicon with MeCl in the presence of butadiene to give silacyclopent-3-enes indicates intermediate formation of silylenes. [Pg.1591]

Steady-state kinetic analysis of a competition experiment led to the conclusion that the siloxolane is formed by reaction of a vinylsilirane intermediate with acetone, and that the vinylsilirane arises from addition of the free silylene to butadiene. Since silylenes are known to react more rapidly with acetone than with butadiene, the kinetic analysis further suggested that the carbonyl sila-ylide dissociates more rapidly than it rearranges to the silyl enol ether shown in equation 64140. [Pg.2491]

The addition of t-Bu2>Si to 1,4-diaza-l,3-butadienes competes with dimerization of the silylene only when the concentration of t-BinSi is low170. Subtle steric effects must also be responsible for the addition of /-BinSi to the W-cyclohexyl mono-imine of benzil, while only the silylene dimer undergoes addition under similar conditions in the presence of the IV-methyl mono-imine171. It may be that t-Bi Si and its dimer t-Bu2Si=SiBu-t2, both formed simultaneously upon photolysis of cyclo (t-Bu2Si)3, are in equilibrium, and the steric effect is upon the (2+4) cycloaddition of the disilene. [Pg.2495]

As discussed in the previous section, thermal dissociation of disilenes into the corresponding silylenes may occur if the BDE of the disilenes is small. As shown in review OW, a facile thermal dissociation of disilene 27 into silylene 127 occurs at 50 °C [Eq. (49)],61,91 The formation of silylene 127 is evidenced by its trapping by methanol, triethylsilane, and 2,3-dimethyl-1,3-butadiene. The activation enthalpy and entropy for the dissociation of (Z)-27 to 127 are 25.5kcalmol-1 and 7.8 cal mol-1 K-1 respectively.91 The activation free energy for the dissociation at 323 K (22.9 kcal mol-1) is much smaller than that for the Z-to-E isomerization of 26 (27.8 kcal mol-1), indicating that the E,Z-isomerization of 27 should occur via the pathway (2) in Eq. (47) rather than pathway (1) in Eq. (48). [Pg.115]

The stable silylenes 83-85 do not react with conventional C=C double bonds however, diazasilole 83 is an efficient catalyst for the polymerization of alkenes, terminal alkynes, and 1,3-butadienes <2000ACR704, 2002USP028920, 2004JOM4165>. The stable bisaminosilylene 85 reacts with the activated double bond in 177-phosphirenes 134. The heterobicyclobutane 135 is however only a transient species and after addition of a second silylene 85 phosphasiletes 136 were isolated. Use of more sterically demanding substituted phosphirenes hampered the attack of the second silylene and the phosphasiletes 137 and 138, which are valence isomers of bicyclobutane 135, were obtained (Scheme 14) <2004AGE3474>. [Pg.684]

The reactivity of platinum silylenoid 27 was explored with traditional silylene trapping reagents. While the silylenoid did not react with triethylsilane or 2,3-dimethyl-1,3-butadiene, phenylacetylene was a viable substrate, providing the me-tallocyclohexadiene 29 (Scheme 7.4).54 The formation of platinum complex 29 was hypothesized to occur via platinum cyclobutene intermediate 28, which formed on insertion of the acetylene into the platinum-silicon bond. A second molecule of phenylacetylene was then inserted into the remaining platinum-silicon bond to provide the observed product. [Pg.187]

The evidence that ,Z-isomerization of 92-95 proceeds by Si=Si bond rotation and not a mechanism involving silylene intermediates, produced by cleavage of the Si=Si bond followed by recombination, rests upon the fact that no trapping products consistent with the intermediacy of the corresponding diarylsilylenes could be detected upon heating the disilenes in the presence of known silylene traps such as methanol, triethylsilane or 2,3-dimethyl-l,3-butadiene. In fact, one tetraaryldisilene has been shown to isomerize by this mechanism, the 1,2-dimesityl-l,2-bis(2,4,6-tris[bis(trimethylsilyl)methyl]phenyl derivatives (E)- and (Z)-97a (equation 70)142,143. Arrhenius parameters for the thermal dissociation of (E)- and (Z)-97a to diarylsilylene 98 are listed in equation 70. [Pg.1005]

M-M bonds in polysilanes and polygermanes as well as silylgermanes are readily cleaved by photolysis to generate reactive silylenes and germylenes which are trapped with butadienes affording the cyclic products 155 and 156 <20000M3232, 2002JOM(649)25>. In the case of 156, the replacement of At by less bulky substituents leads to small yields and the cycloaddition is accompanied by the formation of many side products. [Pg.1203]

The best studied addition reactions of silylene have been those with conjugated dienes. Earlier studies using the nuclear recoil system have shown that 31SiH2 added to 1,3-butadiene to give silacyclopent-3-ene (44, 99, 100). [Pg.4]

In view of the well-established silirane diradical mechanism in reactions of silylene [Eq. (10)] and dimethylsilylene 40, 62), and the involvement of difluorosilirane in the gas-phase reaction of difluoro-silylene [Eq. (61), Section IV], it is somewhat surprising to find that dichlorosilylene alone should take a concerted 1,4-addition route toward butadiene. Further studies are needed to settle this argument. [Pg.14]

Summary New silacyclopropanes were synthesized quantitatively under mild thermal conditions by reaction of olefins with cyclotrisilane (cyclo-(Ar2Si)3, Ar = Me2NCH2QH4) 1, which transfers all of its three silylene subunits to terminal and strained internal olefins. Thermolysis of silacyclopropanes 3a und 3b indicated these compounds to be in a thermal equilibrium with cyclotrisilane 1 and die corresponding olefin. Silaindane 13 was synthesized by reaction of 1 with styrene via initially formed 2-phenyl-1-silacyclopropane 3d. Reaction of 1 with conjugated dienes such as 2,3-dimethyl-l,3-butadiene, 1,3-cyclohexadiene or anthracene resulted in the formation of the expected 1,4-cycloaddition products in high yield. [Pg.75]


See other pages where Silylenes 1,3-butadiene is mentioned: [Pg.2491]    [Pg.2491]    [Pg.27]    [Pg.139]    [Pg.251]    [Pg.160]    [Pg.737]    [Pg.145]    [Pg.492]    [Pg.493]    [Pg.657]    [Pg.658]    [Pg.677]    [Pg.679]    [Pg.688]    [Pg.690]    [Pg.690]    [Pg.35]    [Pg.36]    [Pg.37]    [Pg.65]    [Pg.1177]    [Pg.2475]    [Pg.2495]    [Pg.686]    [Pg.156]    [Pg.471]    [Pg.905]    [Pg.68]   
See also in sourсe #XX -- [ Pg.352 ]




SEARCH



Silylene

Silylenes

Silylenes silylene

© 2024 chempedia.info