Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silyl ketene acetals, Lewis-acid-promoted

Lewis acid promoted condensation of silyl ketene acetals (ester enolate equiv.) with aldehydes proceeds via "open" transition state to give anti aldols starting from either E- or Z- enolates. [Pg.86]

Denmark utilized chiral base promoted hypervalent silicon Lewis acids for several highly enantioselective carbon-carbon bond forming reactions [92-98]. In these reactions, a stoichiometric quantity of silicon tetrachloride as achiral weak Lewis acid component and only catalytic amount of chiral Lewis base were used. The chiral Lewis acid species desired for the transformations was generated in situ. The phosphoramide 35 catalyzed the cross aldolization of aromatic aldehydes as well as aliphatic aldehydes with a silyl ketene acetal (Scheme 26) [93] with good yield and high enantioselectivity and diastereoselectivity. [Pg.362]

Remarkable solvent effects have been reported for select silyl ketene acetal-enone additions for example, acetonitrile suffices to promote additions in the absence of a Lewis acid.86 Alternatively, addi-... [Pg.160]

Further versatility of this approach has been realized with contrasting Lewis acid promoted additions of silyl ketene acetals, (191) to (194), to ethyl propynoate (Scheme 42). In fact, the tandem 1,4-conjugate addition-electrophile trapping protocol is feasible when titanium(IV) tetrachloride is employed. In situ functionalization of the intermediate titanate enoate (259), with select electrophiles, affords a-substituted enoates (260) to (262). On the other hand, the zinc iodide and zirconium(IV) tetrachloride protocols afford directly -y-alkoxycarbonyl-a-trimethylsilylenoates (263) and [2 + 2] adducts (264), respectively.100... [Pg.164]

Significantly higher stereoselectivities were observed in the Lewis acid-promoted 1,4-additions. Kinetically controlled deprotonation/silylation of esters 33 followed by treatment of the resulting crude ketene silyl acetals 35 with TiCl4/Ti(Oi-Pr)4 (2 1) and DTBAD (1.25 equiv.) at -78 °C, gave the adducts 34 in good yields and excellent diastereoselectivities (Scheme 15 Table 3.2). [Pg.74]

BLA 28 is very useful in the double stereodifferentiation of aldol-type reactions of chiral imines [41], Reaction of (5)-benzylidene-a-methylbenzylamine with trimethyl-silyl ketene acetal derived from tert-butyl acetate in the presence of (R)-28 at -78 °C for 12 h provides the corresponding aldol-type adduct in 94 % de (Eq. 78). Including phenol in the reaction mixture does not influence the reactivity or the diastereoselec-tivity. The aldol-type reaction using yellow crystals of (R)-28.(5)-benzylidene-a-methylbenzylamine PhOH proceeds with unprecedented (> 99.5 0.5) diastereoselec-tivity (Eq. 79). In general, 28 is a more efficient chiral Lewis acid promoter than 27. [Pg.183]

Me2AlCl has unique character in the discrimination of reaction pathways in Lewis acid-promoted reactions of aldehydes with organosilicon reagents (Scheme 10.235) [609]. The Me2AlCl-promoted reaction of benzaldehyde and cyclohexanecarbalde-hyde with a ketene silyl acetal and TMSCN affords the corresponding aldol adduct of benzaldehyde and the cyanohydrin TMS ether of cyclohexanecarbaldehyde, exclusively. [Pg.551]

The use of chiral Lewis acids for enantioselective Diels-Alder and hetero Diels-Alder reactions and for other processes of C—C bond formation has recently received great attention. Reetz and coworkers reported that a stoichiometric amount of the chiral Lewis acid (137) effectively promotes the reaction of silyl ketene acetal (98) to give the aldol product in 57% yield and 90% ee (equation 48, R = Me2CHCH2—). When a catalytic amount (5 mol %) of the chiral rhodium perchlorate (138) is used, the aldol product is obtained in >75% yield and 12% ee (equation 48 R = Ph). ° Both reactions probably proceed through the corresponding metal enolates. - The development of new efficient chiral catalysts for the Mukaiyama reaction is certainly one of the challenges of the 1990s. [Pg.654]

Condensations. Hgl2 is a mild Lewis acid, which, as a suspension in an aprotic solvent promotes condensation between silyl ketene acetals and carbonyl com-... [Pg.232]

Lewis-acid-promoted alkylations of silylenol ethers and silyl ketene acetals [195] with Co-complexed acetylenic acetals [196] and acetylenic aldehydes [197,198] (Scheme 4-56) also proceed with fair to excellent syn diastereoselectivity, in contrast to the low selectivity reactions of the free acetylenic derivatives [199, 200]. Reactions of the complexed aldehydes with lithium enolates are stereospecific, with (Z)-enolates giving syn selectivity and ( )-enolates anti selectivity [201]. The complementary stereoselectivity of the crossed aldol reactions of free and cobalt-complexed propynals with silyl ketene 0,S-acetals has been elaborated by Hanoaka exclusive syn selectivity is exhibited by the complexes and high anti selectivity is found with pro-... [Pg.125]

Lewis acid promoted reactions of silicon enolates, /.e., silyl enol ethers and ketene silyl acetals with various electrophiles have yielded a wealth of novel and selective synthetic methods. This combination of reagents has been used in the past to perform such reactions as aldol-condensations with aldehydes and acetals, imine-condensations, conjugate additions to a,P-enones, alkylations, electrophilic aminations, and Diels-Alder/cyclocondensations. Our own interest in this field has involved the use of titanium tetrachloride to promote the reaction of ketene silyl acetals with non-activated imines as an efficient route to P-lactams. This reaction has been applied to the asymmetric synthesis of P-lactams via a chiral imine-titanium tetrachloride template. We have also found that both ketene silyl acetals and vinylketene silyl acetals oxidativelly dimerize or cross-couple, in the presence of titanium tetrachloride to conveniently yield various diesters . Our present study concerns reactions of vinylketene silyl acetals with non-activated imines and vinylimines promoted by titanium and zirconium tetrachlorides. [Pg.37]

A selection of recent results will be presented on a synthesis of monocyclic 3 lactams, a synthesis based on the Lewis acid promoted reaction between silyl ketene acetals and N-silyl imines. Attention will be focussed on aspects of stereocontrol in the preparation of N-protio 3 lactams possessing a variety of usefully functionalised structures. [Pg.310]

Activation of C=X Bonds. Lewis acid activation of carbonyl compounds by ZnBr promotes the addition of allylsilanes and silyl ketene acetals. Addition to imines has also been reported. In general, other Lewis acids have been found to be more useful, though in some instances ZnBr has proven to be advantageous (eq 12). ... [Pg.469]

The use of oxygen-containing dienophiles such as enol ethers, silyl enol ethers, or ketene acetals has received considerable attention. Yoshikoshi and coworkers have developed the simple addition of silyl enol ethers to nitroalkenes. Many Lewis acids are effective in promoting the reaction, and the products are converted into 1,4-dicarbonyl compounds after hydrolysis of the adducts (see Section 4.1.3 Michael addition).156 The trimethylsilyl enol ether of cyclohexanone reacts with nitrostyrenes in the presence of titanium dichloride diisopropoxide [Ti(Oi-Pr)2Cl2], as shown in Eq. 8.99.157 Endo approach (with respect to the carbocyclic ring) is favored in the presence of Ti(Oi-Pr)2Cl2. Titanium tetrachloride affords the nitronates nonselectively. [Pg.276]

The reactions proceeded efficiently under mild conditions in short time. The silyl enol ethers reacted with the activated acetals or aldehydes at -78 °C to give predominant erythro- or threo-products [136, 137] respectively. In the same manner, the aldol reaction of thioacetals, catalyzed by an equimolar amount of catalyst, resulted in <-ketosulfides [139] with high diastereoselectivity. In the course of this investigation, the interaction of silyl enol ethers with a,]3-unsaturated ketones, promoted by the trityl perchlorate, was shown to proceed regioselec-tively through 1,2- [141] or 1,4-addition [138]. The application of the trityl salt as a Lewis acid catalyst was spread to the synthesis of ]3-aminoesters [142] from the ketene silyl acetals and imines resulting in high stereoselective outcome. [Pg.373]

A -Aryl thiourea derivatives were found to behave like Lewis acids to promote the addition of ketene silyl acetals to nitrones and were used in the synthesis of monocyclic and bicyclic isoxazolidinones <2003TL2817>. [Pg.459]

Mukaiyama aldol reactions using a catalytic amount of a Lewis acidic metal salt afford silylated aldols (silyl ethers) as major products, but not free aldols (alcohols). Three mechanistic pathways which account for the formation of the silylated aldols are illustrated in Scheme 10.14. In a metal-catalyzed process the Lewis acidic metal catalyst is regenerated on silylation of the metal aldolate by intramolecular or intermolecular silicon transfer (paths a and b, respectively). If aldolate silylation is slow, a silicon-catalyzed process (path c) might effectively compete with the metal-catalyzed process. Carreira and Bosnich have concluded that some metal triflates serve as precursors of silyl triflates, which promote the aldol reaction as the actual catalysts, as shown in path c [46, 47]. Three similar pathways are possible in the triarylcarbenium ion-catalyzed reaction. According to Denmark et al. triarylcarbenium ions are the actual catalysts (path b) [48], whereas Bosnich has insisted that hydrolysis of the salts by a trace amount of water generates the silicon-based Lewis acids working as the actual catalysts (path c) [47]. Otera et al. have reported that 10-methylacridinium perchlorate is an efficient catalyst of the aldol reaction of ketene triethylsilyl acetals [49]. In this reaction, the perchlorate reacts smoothly with the acetals to produce the actual catalyst, triethylsilyl perchlorate. [Pg.417]


See other pages where Silyl ketene acetals, Lewis-acid-promoted is mentioned: [Pg.83]    [Pg.159]    [Pg.548]    [Pg.250]    [Pg.756]    [Pg.854]    [Pg.186]    [Pg.360]    [Pg.412]    [Pg.745]    [Pg.458]    [Pg.756]    [Pg.756]    [Pg.485]    [Pg.614]    [Pg.614]    [Pg.756]    [Pg.132]    [Pg.1922]    [Pg.156]    [Pg.143]    [Pg.614]    [Pg.235]    [Pg.378]    [Pg.276]    [Pg.476]    [Pg.706]   


SEARCH



Acetals Lewis acid

Acetic acid Lewis acids

Acidity promotion

Keten acetal

Ketene acetal

Ketenes Lewis acid

Ketenes acetals

Ketenes acids

Ketenes silyl acetals

Lewis acids 2 + 2-, promotion

Lewis acids promoters

Lewis promoter

Lewis silyl ketene acetals

Promoters acidic

Promoters silylation

Silyl acetate

Silyl ketene acetals

Silyl ketenes

© 2024 chempedia.info