Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silyl generation

The acidities of the thiolenones are comparable with those of phenols, with pK s of about 10. Oxy-thiophene anions can react at oxygen or carbon and products from reaction of electrophiles at both centres can be obtained. Silylation generates 2-silyloxy derivatives which react at C-5 with aldehydes, in the presence of boron trifluoride. ... [Pg.336]

An Q-arylalkanoate is prepared by the reaction of aryl halide or triflate with the ketene silyl acetal 74 as an alkene component. However, the reaction is explained by transmetallation of Ph - Pd—Br with 74 to generate the Pd eno-late 75, which gives the a-arylalkanoate by reductive elimination[76]. [Pg.139]

Various bicyclic and polycyclic compounds are produced by intramolecular reactions] 127]. In the syntheses of the decalin systems 157 [38] and 158 [128], cis ring Junctions are selectively generated. In the formation of 158, allyhc silyl ether remains intact. A bridged bicyclo[3.3. l]nonane ring 159 was constructed... [Pg.150]

Silyl ethers serve as preeursors of nucleophiles and liberate a nucleophilic alkoxide by desilylation with a chloride anion generated from CCI4 under the reaction conditions described before[124]. Rapid intramolecular stereoselective reaction of an alcohol with a vinyloxirane has been observed in dichloro-methane when an alkoxide is generated by desilylation of the silyl ether 340 with TBAF. The cis- and tru/u-pyranopyran systems 341 and 342 can be prepared selectively from the trans- and c/.y-epoxides 340, respectively. The reaction is applicable to the preparation of 1,2-diol systems[209]. The method is useful for the enantioselective synthesis of the AB ring fragment of gambier-toxin[210]. Similarly, tributyltin alkoxides as nucleophiles are used for the preparation of allyl alkyl ethers[211]. [Pg.336]

Dianion formation from 2-methyl-2-propen-l-ol seems to be highly dependent on reaction conditions. Silylation of the dianion generated using a previously reported method was unsuccessful in our hands. The procedure described here for the metalation of the allylic alcohol is a modification of the one reported for formation of the dianion of 3-methyl-3-buten-l-ol The critical variant appears to be the polarity of the reaction medium. In solvents such as ether and hexane, substantial amounts (15-50%) of the vinyl-silane 3 are observed. Very poor yields of the desired product were obtained in dirnethoxyethane and hexamethylphosphoric triamide, presumably because of the decomposition of these solvents under these conditions. Empirically, the optimal solvent seems to be a mixture of ether and tetrahydrofuran in a ratio (v/v) varying from 1.4 to 2.2 in this case 3 becomes a very minor component. [Pg.65]

Ironically, auxiliary-induced control via the alkene failed to generate synthetically useful selectivities, but direct substrate-induced control did. In particular, chiral silyl enol ethers with stereocenters in the y-position allowed the synthesis of enantiomerically... [Pg.47]

Intramolecular cyclization of 2-phenysulfonylmethyl lactam 3 took place upon reaction with lithium hexamethyldisilazan via generating its a-sulfonyl carbanion to give a cyclized postulated intermediate that can be quenched with trimethylchlorosilane to afford the stable silyl ketal 4. The later ketal was desulfonylated by Raney-Ni and desilylated through treatment with tetrabutyl ammonium fluoride (BU4NF) to afford the carbacephem 5 (94M71) (Scheme 1). [Pg.73]

Nitradon of the potassium enolates of cycloalkanones with pentyl n silyl enol ethers with nitroniiim tetraflnoroborate " provides a method for the preparadon of cydic ct-nitro ketones. Tnflnoroacetyl nitrate generated from tnflnoroacedc anhydnde and ammonium nitrate is a mild and effecdve nitradug reagent for enol acetates fEq. 2.411. ... [Pg.16]

Scheme 5 details the asymmetric synthesis of dimethylhydrazone 14. The synthesis of this fragment commences with an Evans asymmetric aldol condensation between the boron enolate derived from 21 and trans-2-pentenal (20). Syn aldol adduct 29 is obtained in diastereomerically pure form through a process which defines both the relative and absolute stereochemistry of the newly generated stereogenic centers at carbons 29 and 30 (92 % yield). After reductive removal of the chiral auxiliary, selective silylation of the primary alcohol furnishes 30 in 71 % overall yield. The method employed to achieve the reduction of the C-28 carbonyl is interesting and worthy of comment. The reaction between tri-n-butylbor-... [Pg.492]

Trifluoro-2-nitrosopropene can be generated in situ from 1 -bromo-3,3,3-trifluoropropan-2-one 2-oxime. It is a highly reactive nitrosoalkene that readily undergoes cycloaddition with silyl enol ethers and other die-nophiles to give CF3- substituted 1,2-oxazines (92JOC339). [Pg.17]

The Ireland-Claisen reaction of ( )-vinylsilanes has been applied to the stereoselective synthesis of syn- and c/nti-2-substituted 3-silyl alkcnoic acids. a R-2-Alkyl-3-silyl acids are prepared by rearrangement of ( )-silyl ketene acetals which are generated in situ from the kinetically formed (Z)-enolate of the corresponding propionate ester40. Chelation directs the stereochemistry of enolization of heteroelement-substituted acetates in such a way that the syn-diastereomers are invariably formed on rearrangement403. [Pg.345]

A convenient method for the preparation of 2-alkenylbis(cyclopentadienyl)zirconium(IV) alkoxides and -trialkylsilyloxides is the reductive metalation of the appropriate alkyl or silyl ethers by means of in situ generated bis(cyclopentadienyl)zirconium(II) 124. [Pg.405]

Transmetalation of 19 by treatment with two equivalents of diethylaluminum chloride generates the aluminum enolate species 23. The latter reacts with acetaldehyde to produce the stable aluminum aldolates 24 which do not undergo the Peterson elimination23. A protic quench then provides the a-silylated aldol adducts of tentative structures (2 R)-25 and (2 V)-25 with little diastereoselectivity. Other diastereomers are not observed. [Pg.549]

In the presence of a catalytic amount of tetrabutylammonium fluoride, either freshly dried over molecular sieves22 or as the trihydrate16, silylnitronates 2 derived from primary nitroalkanes react readily at — 78 C or below, via their in situ generated nitronates. with aromatic and aliphatic aldehydes to give the silyl-protected (/J, S )-nitroaldol adducts 3 in excellent yield4,22-24-26,27. Silylnitronates, derived from secondary nitroalkanes. afford the adducts in 30 40% overall yield24. In contrast to the classical Henry reaction (vide supra), the addition of silylnitronates to aldehydes is irreversible. Ketones are unreaetive under such conditions. [Pg.631]

So far, there is no conclusive evidence that a free allyl carbanion is generated from allylsilanes under fluoride ion catalysis. A hypervalent silyl anion, with the silicon still bonded to the allylic moiety, accounts equally well for the results obtained. Based on a variety of experimental results, it is in fact more likely that a nonbasic hypervalent silyl anion is involved rather than the basic free allyl carbanion first postulated14-23. When allylsilanes are treated with fluoride in the presence of enones. 1,4-addition takes place along with some 1,2-addition13. [Pg.937]

It is known that Na2Fe(CO)4 can be silylated twice to form cri-[(H3C)3Si]2Fe(CO)4 [109]. Also the reaction of Na2Fe(CO)4 with 1.1-dichlorosilanes has been described and leads exclusively to the dimeric compounds [110, 111], In polar solvents the formation of dimers can be suppressed and monomeric base-stabilized compounds are obtained. A very elegant procedure is the in-situ generation of the carbonylate anions in solution by deprotonation of H2Fe(CO)4. [Pg.11]

Weiss et al. (1984) showed that A V-bis-silylated anilines react in aprotic dichloro-methane with generation of diazonium salts and formation of the non-nucleophilic hexamethyldisiloxane (Scheme 2-28). The authors indicate that the monosilylated aniline C6H5NHSi(CH3)3 reacts in many cases in an analogous way. This seems surprising, since the hydroxytrimethylsilane HOSi(CH3)3 that is formed is a potential proton donor, as it will rapidly condense to give (CH3)3SiOSi(CH3)3 + H20. [Pg.32]

Formal Enolate Generation by Fluoride Ion, Increasing the Nucleophilicity of the Silyl Enol Ether... [Pg.63]

Rhodium-catalysed addition (10) of hydridosilanes (Chapter 17) to a/3-unsaturated carbonyl compounds can be performed regioselectively, to afford either the product of 1,2-addition, or, perhaps more usefully, that of 1,4-addition, i.e. the corresponding silyl enol ether this latter process is an excellent method for the regiospecific generation of silyl enol ethers. Of all catalyst systems investigated, tris(triphenylphosphine)rhodium(l) chloride proved to be the best. [Pg.146]

The reactivity pattern (1) of silyl enol ethers and ketene acetals is based largely on their synthetic equivalence to enolate anions. Recently, a different spectrum of behaviour has been revealed, particularly in those reactions that involve direct reaction without prior generation of the enolate anion. Indeed, the historic development of silyl enol ethers can be seen in three separate phases, involving... [Pg.147]

The cross metathesis of vinylsilanes is catalyzed by the first-generation ruthenium catalyst 9. This transformation has been extensively investigated from both preparative and mechanistic points of view by Marciniec et al. [86]. Interestingly, the same vinylsilanes obtained from cross metathesis may also result from a ruthenium-hydride-catalyzed silylative coupling and there might be some interference of metathesis and nonmetathesis mechanisms [87]. [Pg.253]

Diene 265, substituted by a bulky silyl ether to prevent cycloaddition before the metathesis process, produced in the presence of catalyst C the undesired furanophane 266 with a (Z) double bond as the sole reaction product in high yield. The same compound was obtained with Schrock s molybdenum catalyst B, while first-generation catalyst A led even under very high dilution only to an isomeric mixture of dimerized products. The (Z)-configured furanophane 266 after desilylation did not, in accordance with earlier observations, produce any TADA product. On the other hand, dienone 267 furnished the desired macrocycle (E)-268, though as minor component in a 2 1 isomeric mixture with (Z)-268. Alcohol 269 derived from E-268 then underwent the projected TADA reaction selectively to produce cycloadduct 270 (70% conversion) in a reversible process after 3 days. The final Lewis acid-mediated conversion to 272 however did not occur, delivering anhydrochatancin 271 instead. [Pg.322]


See other pages where Silyl generation is mentioned: [Pg.311]    [Pg.316]    [Pg.363]    [Pg.178]    [Pg.525]    [Pg.527]    [Pg.159]    [Pg.34]    [Pg.389]    [Pg.111]    [Pg.199]    [Pg.961]    [Pg.166]    [Pg.71]    [Pg.112]    [Pg.15]    [Pg.777]    [Pg.293]    [Pg.606]    [Pg.626]    [Pg.628]    [Pg.144]    [Pg.147]    [Pg.148]    [Pg.154]    [Pg.310]    [Pg.325]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



© 2024 chempedia.info