Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon principle

Needs R J and Mujica 1995. First-principles Pseudopotential Study of the Structural Phases of Silicon. Physical Review B51 9652-9660. [Pg.181]

Section 7 16 Atoms other than carbon can be chirality centers Examples include those based on tetracoordmate silicon and Incoordinate sulfur as the chirality center In principle Incoordinate nitrogen can be a chirality center m compounds of the type N(x y z) where x y and z are different but inversion of the nitrogen pyramid is so fast that racemization occurs vrr tually instantly at room temperature... [Pg.318]

The principle of headspace sampling is introduced in this experiment using a mixture of methanol, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, benzene, toluene, and p-xylene. Directions are given for evaluating the distribution coefficient for the partitioning of a volatile species between the liquid and vapor phase and for its quantitative analysis in the liquid phase. Both packed (OV-101) and capillary (5% phenyl silicone) columns were used. The GG is equipped with a flame ionization detector. [Pg.611]

J. Kr. Tuset, Principles of Silicon Eefning International Seminar on Refining and Alloying of Liquid Aluminum and Eerro-AHoys, Trondheim, Norway, Aug. 26,1985. [Pg.542]

Copper—chromium and copper—nickel—silicon—chromium alloys are also precipitation hardenable. The precipitates are nickel sdicides, chromium silicides, and elemental chromium. If conductivity is critical, the chromium—silicon ratio should be held at 10 1 so that appreciable amounts of either element are not left in soHd solution in the copper after aging. Lithium can be used as a deoxidizer in copper alloys when conductivity is important. For a discussion of the principle of age- or precipitation-hardening copper alloys, see Copperalloys,wrought copperalloys. [Pg.238]

NAA is a quantitative method. Quantification can be performed by comparison to standards or by computation from basic principles (parametric analysis). A certified reference material specifically for trace impurities in silicon is not currently available. Since neutron and y rays are penetrating radiations (free from absorption problems, such as those found in X-ray fluorescence), matrix matching between the sample and the comparator standard is not critical. Biological trace impurities standards (e.g., the National Institute of Standards and Technology Standard Rference Material, SRM 1572 Citrus Leaves) can be used as reference materials. For the parametric analysis many instrumental fiictors, such as the neutron flux density and the efficiency of the detector, must be well known. The activation equation can be used to determine concentrations ... [Pg.675]

Nevertheless Kipping made a number of contributions of value to the modem silicone industry. In 1904 he introduced the use of Grignard reagents for the preparation of chlorosilanes and later discovered the principle of the inter-molecular condensation of the silane diols, the basis of current polymerisation practice. The term silicone was also given by Kipping to the hydrolysis products of the disubstituted silicon chlorides because he at one time considered them as being analogous to the ketones. [Pg.815]

These results demonstrate some interesting chemical principles of the use of acrylic adhesives. They stick to a broad range of substrates, with some notable exceptions. One of these is galvanized steel, a chemically active substrate which can interact with the adhesive and inhibit cure. Another is Noryl , a blend of polystyrene and polyphenylene oxide. It contains phenol groups that are known polymerization inhibitors. Highly non-polar substrates such as polyolefins and silicones are difficult to bond with any technology, but as we shall see, the initiator can play a big role in acrylic adhesion to polyolefins. [Pg.824]

In 1985 Car and Parrinello invented a method [111-113] in which molecular dynamics (MD) methods are combined with first-principles computations such that the interatomic forces due to the electronic degrees of freedom are computed by density functional theory [114-116] and the statistical properties by the MD method. This method and related ab initio simulations have been successfully applied to carbon [117], silicon [118-120], copper [121], surface reconstruction [122-128], atomic clusters [129-133], molecular crystals [134], the epitaxial growth of metals [135-140], and many other systems for a review see Ref. 113. [Pg.82]

Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc. Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc.
A photovoltaic material generates a voltage when it is exposed to light and photovoltaic can be considered as a specialized area of optoelectronics. The principle has been known for many decades but it became a industrial reality only in 1958 when an array of photovoltaic cells, based on single-crystal silicon, provided power for a space vehicle. [Pg.393]


See other pages where Silicon principle is mentioned: [Pg.2788]    [Pg.18]    [Pg.177]    [Pg.311]    [Pg.37]    [Pg.133]    [Pg.36]    [Pg.219]    [Pg.356]    [Pg.358]    [Pg.416]    [Pg.403]    [Pg.1141]    [Pg.148]    [Pg.329]    [Pg.330]    [Pg.297]    [Pg.1069]    [Pg.366]    [Pg.22]    [Pg.701]    [Pg.234]    [Pg.242]    [Pg.290]    [Pg.292]    [Pg.296]    [Pg.296]    [Pg.297]    [Pg.552]    [Pg.12]    [Pg.131]    [Pg.475]    [Pg.118]    [Pg.382]    [Pg.153]    [Pg.114]    [Pg.43]    [Pg.146]   
See also in sourсe #XX -- [ Pg.350 ]




SEARCH



Electrorefining of Silicon by the Three-Layer Principle in a CaF2-Based Electrolyte

Silicon first principles theory

© 2024 chempedia.info