Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon-polyurethane plastic

Elasticity If the product requires flexibility, examples of the choices includes polyethylene, vinyl, polypropylene, EVA, ionomer, urethane-polyester, fluorocarbon, silicone, polyurethane, plastisols, acetal, nylon, or some of the rigid plastics that have limited flexibility in thin sections. [Pg.431]

Liquid membranes consist of an organic phase, which by its hydrophobic nature is relatively impermeable to ions. Originally organic solvents such as decanol were used in conjunction with a porous hydrophobic membrane. These have been replaced by plasticized polyvinyl chloride membranes which behave like liquids yet have improved mechanical properties Other polymers such as silicone, polyurethane and ururshi, a... [Pg.58]

Syntactic foamed plastics (from the Greek ovvxa C, to put together) or spheroplastics are a special kind of gas filled polymeric material. They consist of a polymer matrix, called the binder, and a filler of hollow spherical particles, called microspheres, microcapsules, or microballoons, distributed within the binder. Expoxy and phenolic resins, polyesters, silicones, polyurethanes, and several other polymers and oligomers are used as binders, while the fillers have been made of glass, carbon, metal, ceramics, polymers, and resins. The foamed plastic is formed by the microcapsular method, i.e. the gas-filled particles are inserted into the polymer binder1,2). [Pg.67]

The use is discussed of Vanquish biocides from Zeneca Biocides. They are antimicrobials developed specifically for the plastics industiy, and have a broad spectmm of activity in a wide range of polymers, including PVC, polyurethanes, polyolefins and silicones. Features and properties of the products are described, and their application in silicone, polyurethane and PVC products is examined. [Pg.83]

The basic chemical reactions, used to synthesize monomer and polymer resins and the chemistry involved in the use of curing agents to polymerize the resins, have been extensively studied and are well documented. This section serves as a summary only of those polymers that are primarily used in adhesives formulations for electronic applications. Among these polymers are the epoxies, silicones, polyurethanes, polyimides, acrylates, cyanate esters, and cyclo-olefins. Further technical detail for these polymers maybe acquired through literature searches in the transactions of the American Chemical Society (Polymer Group), Society of Plastics Engineers (SPE), and the Society for the Advancement of Materials and Process Engineers (SAMPE). [Pg.96]

Classical rubber processing is time and effort consuming because of the high polymer viscosities working in of vulcanization accelerators, fillers, plasticizers, activators, etc., must be carried out on roll mills, the vulcanization must take place in heated presses. In contrast, liquid rubbers have low viscosities, and so, can be more easily processed. These have already been known for a long time in the case of silicones, polyurethanes, polyesters, and polyethers, but have only been very recently developed in the case of diene rubbers. [Pg.739]

One of the best ways to reduce and in many cases eliminate vibration problems is by the use of viscoelastic plastics. Some materials such as polyurethane plastics, silicone elastomers, flexible vinyl compounds of specific formulations, and a number of others have very large hysteresis effects (Chapter 3). By designing them into the structure it is possible to have the viscoelastic material absorb enough of the vibration inducing energy and convert it to heat so that the structure is highly damped and will not vibrate. [Pg.91]

Conventional machining operations are used preferably from the same plastic to be used in the product (Chapter 8, SECONDARY EQUIPMENT). Different casting techniques are used that provide low cost even though they are usually labor intensive. The casting of unfilled or filled/reinforced plastic used include TS polyurethane, epoxy, structural foam, and RTV silicone. Also used are die cast metals. [Pg.178]

The use of special elastomer plastics (polyurethanes, silicones, etc.) designed ex-... [Pg.259]

It is a well-known fact that specific plastic materials like flexible PVC, Polyurethane or Silicone may be easily attacked by microorganisms leading to discoloration or mechanical failures.14 This susceptibility to microbial attack is mainly attributed to the plasticiser content of the material as well as other ingredients such as stabiliser or antioxidants.5,6 The predominant organisms on the surface of those plastics are fungi and actinomycetes and it is said that by the action of their extracellular enzymes other organisms such as bacteria may be able to grow on the material.7... [Pg.103]

While unaffected by water, styrofoam is dissolved by many organic solvents and is unsuitable for high-temperature applications because its heat-distortion temperature is around 77°C. Molded styrofoam objects are produced commercially from expandable polystyrene beads, but this process does not appear attractive for laboratory applications because polyurethane foams are much easier to foam in place. However, extruded polystyrene foam is available in slabs and boards which may be sawed, carved, or sanded into desired shapes and may be cemented. It is generally undesirable to join expanded polystyrene parts with cements that contain solvents which will dissolve the plastic and thus cause collapse of the cellular structure. This excludes from use a large number of cements which contain volatile aromatic hydrocarbons, ketones, or esters. Some suitable cements are room-temperature-vulcanizing silicone rubber (see below) and solvent-free epoxy cements. When a strong bond is not necessary, polyvinyl-acetate emulsion (Elmer s Glue-All) will work. [Pg.139]

Organotin compounds have various industrial uses. Disubstituted organotins are used in the production of plastics including food wrap where they act as stabilizers at 0.5%-2.0% by weight (WHO 1980). Disubstituted organotins are added to polyurethane foams and silicone to increase their strength and to minimize stickiness and odors (WHO 1980). [Pg.133]

Titanates have been instrumental in the bonding of fluorinated resins to packaging films, poly(hydantoin)—polyester to polyester wire enamel, polysulfide sealant to polyurethane (a phosphated titanate is recommended), polyethylene to cellophane using a titanated polyethylenimine, and silicone mbber sealant to metal or plastic support using polysilane (Si—H) plus polysiloxane (Si—OR) and titanate as the adhesive ingredients (450—454). Polyester film coated first with a titanium alkoxide, then with a poly(vinyl alcohol)—polyethylenimine blend, becomes impermeable to gases (455). [Pg.161]

Polyurethane sealant formulations use TDI or MDI prepolymers made from polyether polyols. The sealants contain 30—50% of the prepolymer the remainder consists of pigments, fillers, plasticizers, adhesion promoters, and other additives. The curing of the sealant is conducted with atmospheric moisture. One-component windshield sealants utilize diethyl malonate-blocked MDI prepolymers (46). Several polyurethane hybrid systems, containing epoxies, silicones, or polysulfide, are also used. [Pg.350]

In general, plastics are superior to elastomers in radiation resistance but are inferior to metals and ceramics. The materials that will respond satisfactorily in the range of 1010 and 1011 erg per gram are glass and asbestos-filled phenolics, certain epoxies, polyurethane, polystyrene, mineral-filled polyesters, silicone, and furane. The next group of plastics in order of radiation resistance includes polyethylene, melamine, urea formaldehyde, unfilled phenolic, and silicone resins. Those materials that have poor radiation resistance include methyl methacrylate, unfilled polyesters, cellulosics, polyamides, and fluorocarbons. [Pg.31]


See other pages where Silicon-polyurethane plastic is mentioned: [Pg.116]    [Pg.116]    [Pg.414]    [Pg.100]    [Pg.200]    [Pg.554]    [Pg.537]    [Pg.77]    [Pg.290]    [Pg.437]    [Pg.96]    [Pg.47]    [Pg.124]    [Pg.339]    [Pg.432]    [Pg.353]    [Pg.124]    [Pg.638]    [Pg.649]    [Pg.102]    [Pg.245]    [Pg.109]    [Pg.859]    [Pg.645]    [Pg.75]    [Pg.198]    [Pg.351]    [Pg.65]    [Pg.682]    [Pg.144]    [Pg.396]    [Pg.219]   
See also in sourсe #XX -- [ Pg.115 ]




SEARCH



Polyurethane plasticizers

© 2024 chempedia.info