Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon mechanical properties

Common alloying elements include nickel to improve low temperature mechanical properties chromium, molybdenum, and vanadium to improve elevated-temperature properties and silicon to improve properties at ordinary temperatures. Low alloy steels ate not used where corrosion is a prime factor and are usually considered separately from stainless steels. [Pg.347]

Properties of Dense Silicon Carbide. Properties of the SiC stmctural ceramics are shown in Table 1. These properties are for representative materials. Variations can exist within a given form depending on the manufacturer. Figure 2 shows the flexure strength of the SiC as a function of temperature. Sintered or sinter/HIP SiC is the preferred material for appHcations at temperatures over 1400°C and the Hquid-phase densified materials show best performance at low temperatures. The reaction-bonded form is utilized primarily for its ease of manufacture and not for superior mechanical properties. [Pg.319]

More than half of the elements in the Periodic Table react with silicon to form one or more silicides. The refractory metal and noble metal silicides ate used in the electronics industry. Silicon and ferrosilicon alloys have a wide range of applications in the iron and steel industries where they are used as inoculants to give significantly improved mechanical properties. Ferrosilicon alloys are also used as deoxidizers and as an economical source of silicon for steel and iron. [Pg.535]

Creep Resistsince. Studies on creep resistance of particulate reinforced composites seem to indicate that such composites are less creep resistant than are monolithic matrices. Silicon nitride reinforced with 40 vol % TiN has been found to have a higher creep rate and a reduced creep strength compared to that of unreinforced silicon nitride. Further reduction in properties have been observed with an increase in the volume fraction of particles and a decrease in the particle size (20). Similar results have been found for SiC particulate reinforced silicon nitride (64). Poor creep behavior has been attributed to the presence of glassy phases in the composite, and removal of these from the microstmcture may improve the high temperature mechanical properties (64). [Pg.58]

This computation is also referred to as calculating the zinc equivalent of the alloy. The increase in strength in this alloy series is caused by increased amounts of beta phase in the stmcture. The silicon brasses show similar hardening effects accompanying a second phase. Typical mechanical properties and electrical conductivity for various cast alloys are shown in Table 2. [Pg.238]

Bronzes are somewhat similar to brasses in mechanical properties and to high-zinc brasses in corrosion resistance (except that bronzes are not affected by stress cracking). Aluminum and silicon bronzes are very popiilar in the process industries because they combine good strength with corrosion resistance. [Pg.2451]

In the sintering of such materials as silicon nindde, a silica-rich liquid phase is formed which remains in the sintered body as an intra-granular glass, but this phase, while leading to consolidation, can also lead to a deterioration in the high-temperature mechanical properties. [Pg.301]

Because of their favourable price, polyesters are preferred to epoxide and furane resins for general purpose laminates and account for at least 95% of the low-pressure laminates produced. The epoxide resins find specialised uses for chemical, electrical and heat-resistant applications and for optimum mechanical properties. The furane resins have a limited use in chemical plant. The use of high-pressure laminates from phenolic, aminoplastic and silicone resins is discussed elsewhere in this book. [Pg.707]

The surface energy of silicones, the liquid nature of the silicone polymers, the mechanical properties of the filled networks, the relative insensitivity to temperature variations from well below zero to very high, and the inherent or added reactivity towards specific substrates, are among the properties that have contributed to the success of silicone materials as adhesives, sealants, coatings, encapsulants, etc. [Pg.705]

These alloys have corrosion resistance similar to that of copper, with mechanical properties equivalent to mild steel. Because silicon bronzes do not generate sparks under shocks, they can be used in the fabrication of explosion-proof equipment. Compared to tin bronzes, the tinless bronzes have a higher shrinkage (1.7-2.5% against 1.3-1.5% of tin bronzes) and less fluid-flow, which is an important consideration in designing. [Pg.83]

Nonmagnetic drill collars are manufactured from various alloys, although the most common are Monel K500 (approximately 68% nickel, 28% copper with some iron and manganese, and 316L austenitic stainless steel). A stainless steel with the composition of 0.06% carbon, 0.50% silicon, 17-19% manganese, less than 3.50% nickel, 12% chromium, and 1.15% molybdenum, with mechanical properties of 110 to 115 Ksi tensile strength is also used. [Pg.1258]

Table 3.57 Mechanical properties of silicon-iron alloys ... Table 3.57 Mechanical properties of silicon-iron alloys ...
The analyses of typical high-silicon irons are given in Table 3.56 and their typical mechanical properties in Table 3.57. [Pg.623]

In view of the poor mechanical properties of the high-silicon irons, the development of any stresses in the castings during solidification is very dangerous, since they may cause the casting to crack in subsequent service. To overcome this risk, it is often desirable to strip the castings from the moulds while they are still red hot and to anneal them at 850°C for 4-5 h, followed by slow cooling ... [Pg.625]

Note The principal reinforcement, with respect to quantity, is glass fibers, but many other types are used (cotton, rayon, polyester/TP, nylon, aluminum, etc.). Of very limited use because of their cost and processing difficulty are whishers (single crystals of alumina, silicon carbide, copper, or others), which have superior mechanical properties. [Pg.355]


See other pages where Silicon mechanical properties is mentioned: [Pg.698]    [Pg.57]    [Pg.817]    [Pg.570]    [Pg.698]    [Pg.57]    [Pg.817]    [Pg.570]    [Pg.38]    [Pg.1711]    [Pg.501]    [Pg.346]    [Pg.391]    [Pg.105]    [Pg.208]    [Pg.167]    [Pg.198]    [Pg.698]    [Pg.113]    [Pg.559]    [Pg.677]    [Pg.680]    [Pg.685]    [Pg.691]    [Pg.704]    [Pg.705]    [Pg.488]    [Pg.624]    [Pg.624]    [Pg.628]    [Pg.952]    [Pg.469]    [Pg.226]    [Pg.7]    [Pg.66]    [Pg.149]    [Pg.60]    [Pg.81]   
See also in sourсe #XX -- [ Pg.184 , Pg.186 ]




SEARCH



Mechanical properties: silicones

Mechanical properties: silicones

Silicon Nitride Single Crystals Mechanical Properties

Silicon carbide fibre mechanical properties

Silicon carbide mechanical properties

Silicon carbide mechanical/chemical properties

Silicon mechanism

Silicon nitride mechanical properties

Silicones properties

© 2024 chempedia.info