Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon alkynes

In 1993, Linford firstly reported a quite useful method to prepare monolayers of alkyl chains by thermal hydros-ilylation of hydrogen-terminated silicon surfaces [25]. Alkyl chains are covalently bound to Si surface by Si-C bonds. This thermal hydrosilylation could be attributed to a free-radical process with 1-alkene. First, a diacyl peroxide initiator was used to produce free radicals. However, at higher temperature, only hydrogen-terminated silicon and a neat solution of 1-alkene or 1-alkyne can form Si-C linkages [26]. Furthermore, lately it is found that such Si-C covalent links can be observed even in dilute solutions of 1-alkenes [27]. In that case, the density of monolayer packing strongly depends on the reaction temperature. [Pg.456]

Silicon substituents can be introduced into alkenes and alkynes by hydrosilation.70 This reaction, in contrast to hydroboration, does not occur spontaneously, but it can be carried out in the presence of catalysts such as H2PtCl6, hexachloroplatinic acid. Other catalysts are also available.71 Halosilanes are more reactive than trialkylsilanes.72... [Pg.810]

Clive and coworkers have developed a new domino radical cyclization, by making use of a silicon radical as an intermediate to prepare silicon-containing bicyclic or polycyclic compounds such as 3-271 and 3-272 (Scheme 3.69) [109], After formation of the first radical 3-267 from 3-266, a 5-exo-dig cyclization takes place followed by an intramolecular 1,5-transfer of hydrogen from silicon to carbon, providing a silicon-centered radical 3-269 via 3-268. Once formed, this has the option to undergo another cyclization to afford the radical 3-270, which can yield a stable product either by a reductive interception with the present organotin hydride species to obtain compounds of type 3-271. On the other hand, when the terminal alkyne carries a trimethylstannyl group, expulsion of a trimethylstannyl radical takes place to afford vinyl silanes such as 3-272. [Pg.265]

Employing a molar excess of the alkyne over the active hydrogen of only 12 percent the selectivity (determined by proton NMR after work-up) may be expressed as the ratio of Si-C=CH- to Si-CH2-CH2-CO-, which is about 100 1 [16]. The same reaction, carried out with silicone polymers with 10 or more pendant silicon-bonded hydrogen atoms, proceeds similarly cleanly without noticeable crosslinking by acrylic hydrosilylation. A slight excess of triple bond over Si-H groups is mandatory to suppress this side reaction as well as hydrosilylation of the olefinic group of the 2-silylalkene isomer product (see Table 2.). [Pg.257]

Based on the extraordinary selectivity in hydrosilylation reactions when an alkyne competes with other groups for a silicon-bonded active hydrogen, further derivatisation can be carried out. The hydrosilylation of 2-methyl-3-butynol, which works very well with polymeric siloxanes, gives hydroxyal-kenylsilicon compounds - a l-silylalkenyl/2-silylalkenyl mixture from cis-addition across the triple bond. Elimination of water from the tert. alcohol produced, catalyzed by traces of a strong acid, results in isoprenylic siloxanes in more than 90 % overall yield (Eq. 8). [Pg.259]

On the other hand polysilylalkynes with phenyl or allyl substituents are converted with triflic acid into polymeric alkynylsilyltriflates. These polymers react with many acidic element hydrogen compounds or lithium element compounds with formation of silicon element bonds. Thus we found an easy approach to numerous new functional substituted alkynes [12], Eq.(9) shows selected examples of this reaction type. [Pg.366]

In the reaction of 1 with alkynes possessing electron-withdrawing substituents, the corresponding silacyclopropene derivatives 66 and 67 are formed, as described in Scheme 23.29 An unexpected pathway was observed in the reaction with the electron-poor hexafluorobutyne(2) the X-ray characterized heterocycle 68 was most likely obtained by nucleophilic attack of 1 at the triple bond. A subsequent shift of a fluorine atom from carbon to silicon creates an allene-type molecule which was stabilized by a [2 + 2] cycloaddition process involving a double bond from the pentamethylcyclopentadienyl unit, as described in Scheme 24.33... [Pg.24]

Palladium-catalyzed addition of a silicon-tin linkage across a carbon-carbon triple bond was first reported in 1985 by the Mitchell group and the Ghenard group independently.251,252 Since then, the silastannation reaction of alkynes has been studied extensively (Table J) 25S 261... [Pg.770]

A thermodynamically stable (silyl)(stannyl)palladium(n) complex is synthesized by an oxidative addition of the Si-Sn linkage to palladium(O) (Scheme 63).267 The complex has the square-planar geometry with a m-arrangement of the silicon and tin atoms. An alkyne reacts with the complex to afford a silastannated product as a mixture of cisjtrans stereoisomers (10 1). [Pg.772]

Selenium-Silicon and Selenium-Germanium 10.16.3.7.1 Addition to alkynes... [Pg.779]

Palladium-catalyzed addition of the selenium-silicon bond of PhSe-SiMe3 to arylacetylenes proceeds in a regio- and stereoselective manner to afford (Z)-a-(phenylseleno)-/ -(trimethylsilyl)styrenes (Equation (123)).250 Aliphatic alkynes fails to undergo the addition reaction. Analogous addition of the Se-Ge bond to alkynes occurs under similar conditions. [Pg.779]

The preference for the /3-silyl isomer product complements methods available for hydrostannation of alkynes, for which the a-stannyl regioisomer is formed preferentially.70 7011 70c In addition, the /3-silyl products serve as the platform for a tertiary alcohol synthesis (Scheme 15). Upon treatment of vinylsilanes such as B with tetrabutylam-monium fluoride (TBAF) in DMF at 0 °C, a 1,2 carbon-to-silicon migration occurs, affording the tertiary heterosilane E. Oxidation of the C-Si bond then provides the tertiary alcohol. Good 1,2-diastereocontrol has been demonstrated for y-alkoxy substrates, as in the example shown. The studies suggest that the oxidation of the sterically demanding silane intermediate is facilitated by the intramolecular formation of a silyl hemiketal or silyllactone for ketone or ester substrates, respectively.71... [Pg.803]

Skrydstrup, Beau and co-workers122 have adapted Stork s method to the SmI2-reduction of glycosyl pyridyl sulfones bearing a silicon-tethered unsaturated group at HO-C(2). An example is shown with the synthesis of methyl a-C-zso-maltoside 172 from alkyne 170 via the 5-exo-dig radical cyclization of 171 (Scheme 56).144... [Pg.61]

On the basis of these results we embarked on a systematic study on the synthesis of vinyl cations by intramolecular addition of transient silylium ions to C=C-triple bonds using alkynyl substituted disila alkanes 6 as precursors.(35-37) In a hydride transfer reaction with trityl cation the alkynes 6 are transformed into the reactive silylium ions 7. Under essentially nonHnucleophilic reaction conditions, i.e. in the presence of only weakly coordinating anions and using aromatic hydrocarbons as solvents, the preferred reaction channel for cations 7 is the intramolecular addition of the positively charged silicon atom to the C=C triple bond which results in the formation of vinyl cations 8-10 (Scheme 1). [Pg.66]


See other pages where Silicon alkynes is mentioned: [Pg.543]    [Pg.156]    [Pg.1028]    [Pg.166]    [Pg.167]    [Pg.172]    [Pg.173]    [Pg.18]    [Pg.145]    [Pg.25]    [Pg.146]    [Pg.124]    [Pg.115]    [Pg.65]    [Pg.184]    [Pg.109]    [Pg.280]    [Pg.356]    [Pg.514]    [Pg.525]    [Pg.726]    [Pg.734]    [Pg.770]    [Pg.770]    [Pg.770]    [Pg.779]    [Pg.789]    [Pg.790]    [Pg.790]    [Pg.792]    [Pg.653]    [Pg.654]    [Pg.65]    [Pg.839]    [Pg.122]    [Pg.252]   
See also in sourсe #XX -- [ Pg.4 , Pg.5 , Pg.5 , Pg.6 ]

See also in sourсe #XX -- [ Pg.2 , Pg.5 , Pg.5 , Pg.7 , Pg.9 ]




SEARCH



Silicon synthesis from alkynes

Silicon-transition-metal complexes alkynes

© 2024 chempedia.info