Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Side reaction function

Postreactions of polyacrylamide to iatroduce anionic, cationic, or other functional groups are often attractive from a cost standpoiat. This approach can suffer, however, from side reactions resulting ia cross-linking or the iatroduction of unwanted functionahty, such as carboxyl groups from hydrolysis. [Pg.140]

The functionaHty of the terminal epoxy groups approaches values greater than 1.9, but this is in large measure a function of controlling the foUowing side-reactions ... [Pg.365]

Treatment of thiiranes with lithium aluminum hydride gives a thiolate ion formed by attack of hydride ion on the least hindered carbon atoms (76RCR25), The mechanism is 5n2, inversion occurring at the site of attack. Polymerization initiated by the thiolate ion is a side reaction and may even be the predominant reaction, e.g. with 2-phenoxymethylthiirane. Use of THF instead of ether as solvent is said to favor polymerization. Tetrahydroborates do not reduce the thiirane ring under mild conditions and can be used to reduce other functional groups in the presence of the episulfide. Sodium in ammonia reduces norbornene episulfide to the exo thiol. [Pg.165]

The product composition from these reactions is influenced by the location of the functional group in the substrate. Olefin formation is the most common side reaction and in certain cases, especially with reductions of tosyl-hydrazones (section IV-B), it may become dominant so that the reaction can be used for the preparation of mono-labeled olefins. [Pg.171]

Alcoholic potassium hydroxide or sodium hydroxide are normally used to convert the halohydrins to oxiranes. Other bases have also been employed to effect ring closure in the presence of labile functional groups such as a-ketols, e.g., potassium acetate in ethanol, potassium acetate in acetone or potassium carbonate in methanol.However, weaker bases can lead to solvolytic side reactions. Ring closure under neutral conditions employing potassiunT fluoride in dimethyl sulfoxide, dimethylformamide or A-methyl-pyrrolidone has been reported in the patent literature. [Pg.17]

FIGURE4.il Reactions of amino acid side-chain functional groups. [Pg.95]

The importance of the solvent, in many cases an excess of the quatemizing reagent, in the formation of heterocyclic salts was recognized early. The function of dielectric constants and other more detailed influences on quatemization are dealt with in Section VI, but a consideration of the subject from a preparative standpoint is presented here. Methanol and ethanol are used frequently as solvents, and acetone,chloroform, acetonitrile, nitrobenzene, and dimethyl-formamide have been used successfully. The last two solvents were among those considered by Coleman and Fuoss in their search for a suitable solvent for kinetic experiments both solvents gave rise to side reactions when used for the reaction of pyridine with i-butyl bromide. Their observation with nitrobenzene is unexpected, and no other workers have reported difficulties. However, tetramethylene sulfone, 2,4-dimethylsulfolane, ethylene and propylene carbonates, and salicylaldehyde were satisfactory, giving relatively rapid reactions and clean products. Ethylene dichloride, used quite frequently for Friedel-Crafts reactions, would be expected to be a useful solvent but has only recently been used for quatemization reactions. ... [Pg.10]

As one would expect, in those cases in which the ionic liquid acts as a co-catalyst, the nature of the ionic liquid becomes very important for the reactivity of the transition metal complex. The opportunity to optimize the ionic medium used, by variation of the halide salt, the Lewis acid, and the ratio of the two components forming the ionic liquid, opens up enormous potential for optimization. However, the choice of these parameters may be restricted by some possible incompatibilities with the feedstock used. Undesired side reactions caused by the Lewis acidity of the ionic liquid or by strong interaction between the Lewis acidic ionic liquid and, for example, some oxygen functionalities in the substrate have to be considered. [Pg.222]

In conclusion, the self-condensation of 2-furaldehyde promoted by heat occurs with the formation of di- and trifurylic intermediates. The functionality of the growing chain increases after each oligomerization step until gelation and precipitation of the resin occurs. Thus, the process is non-linear from the onset since the condensation product 4 possesses three sites for further attack, namely the free C-5 position and the two formyl groups. It is interestering to note that while the polycondensation of 2-furfuryl alcohol is essentially linear and cross-linking is due to side reactions, the thermal resinification of 2-furaldehyde is intrinsically non-linear and gel formation occurs at earlier conversions. [Pg.56]

An investigation of the thioamidation reaction on model compounds of PAN under similar conditions and a study of the functional composition of modified copolymers led to the assumption that the most probable course of the two types of side reactions causing the decrease of the number of thioamide groups are hydrolysis and cyclization reactions. [Pg.121]

These conditions severely limit the range of initiators and monomers that can be used and require that attention to reaction conditions is of paramount importance. The relatively low incidence of side reactions associated with the use of azo-compounds (Section 3.3.1) has led to these initiators being favored for this application. Functional azo compounds used in telechelic syntheses include 9,19c> 198 10l99,2ml and ll20l,2<12. The acylazidc end groups formed with initiator 11 may be thermally transformed to isocyanate ends.201 2t, ... [Pg.375]

A side reaction in NMP is loss of nilroxide functionality by thermal elimination. This may occur by disproportionation of the propagating radical with nitroxide or direct elimination of hydroxy lam ine as discussed in Section 9.3.6.3. In the case of methacrylate polymerization this leaves an unsaturated end group.1" The chemistry has also been used to prepare macromonomers from PMMA prepared by ATRP (Section 9.7.2.1),... [Pg.533]

Step-growth polymerization processes must be carefully designed in order to avoid reaction conditions that promote deleterious side reactions that may result in the loss of monomer functionality or the volatilization of monomers. For example, initial transesterification between DMT and EG is conducted in the presence of Lewis acid catalysts at temperatures (200°C) that do not result in the premature volatilization of EG (neat EG boiling point 197°C). In addition, polyurethane formation requires the absence of protic impurities such as water to avoid the premature formation of carbamic acids followed by decarboxylation and formation of the reactive amine.50 Thus, reaction conditions must be carefully chosen to avoid undesirable consumption of the functional groups, and 1 1 stoichiometry must be maintained throughout the polymerization process. [Pg.13]

Poly(tetramethylene oxide) polyols (see Scheme 4.4) are a special class of polyethers syndiesized via acid-catalyzed ring-opening polymerization of tetrahy-drofuran. Although less susceptible to side reactions, the synthesis of these C4 ethers is less flexible in terms of product composition and structure. Thus, because of diis syndietic route, only two-functional glycols are available and copolymers are not readily available. Molecular weights of commercial C4 glycols range up to about 3000 g/m. [Pg.223]


See other pages where Side reaction function is mentioned: [Pg.12]    [Pg.209]    [Pg.309]    [Pg.43]    [Pg.269]    [Pg.516]    [Pg.516]    [Pg.90]    [Pg.160]    [Pg.243]    [Pg.293]    [Pg.768]    [Pg.41]    [Pg.235]    [Pg.97]    [Pg.96]    [Pg.66]    [Pg.67]    [Pg.28]    [Pg.123]    [Pg.126]    [Pg.247]    [Pg.169]    [Pg.701]    [Pg.33]    [Pg.595]    [Pg.51]    [Pg.51]    [Pg.397]    [Pg.488]    [Pg.489]    [Pg.534]    [Pg.535]    [Pg.187]    [Pg.11]    [Pg.75]    [Pg.223]   


SEARCH



Reaction function

© 2024 chempedia.info