Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical activity side chain

CH2)2X groups, on the other hand, may provide rotation contributions which are related to the ethane-type helical optical activity of alkyl chains ( side-chain optical activity ). If in solution the conformers Xaand Xb (which are enantiomers for R = R and r2 = found in equal amount, the overall side-chain optical activity will add to a... [Pg.33]

Side chain optical activity has occasionally been observed as irregularities in the ORD and CD curves in the near UV (250-300nm) where aromatic residues absorb light. They contribute the positive Cotton effect with peak and trough at 285nm (Tip), 280nm (Tyr) and small Cotton effects between 260-270nm probably from Phe. [Pg.212]

In the visible region, carbazole and azo chromophores containing side chain optically active co-polymers give rise to charge carried via a charge transfer complex of induced intramolecular structure. Due to the photoconductivity which was concerned to hole hopping between the molecular mobility of chromophore and side chain carbazole units affected the mechanism of hole transportation due to macromolecular structure [58]... [Pg.33]

Synthetic polymers with conformational chirality have become a research field of widespread interest in recent years, and a wide range of polymers with conformational chirality have been synthesized from various types of monomers including vinyl monomers [9, 61-63, 128-136]. The existing examples of optically active vinyl polymers with conformational chirality include isotactic, helical polyolefins bearing asymmetric side chains [133-135] and isotactic, hehcal polymethacrylates bearing bulky, achiral side chains [61-63,136]. These polymers have stereocenters in the main and/or side chains. Optically active poly(PDBS) is the first vinyl polymer with conformational chirality bearing no stereocenters in the main and side chains whose chiroptical properties arise only from a chiral conformation. [Pg.38]

Various types of copolymers of cyclic olefins and other monomers have been prepared by asymmetric synthesis polymerizations using monomers with optically active side groups, ° optically active additives, " cata-lysts, or solvents.Among these, the synthesis of a copolymer of maleic anhydride and (S)-(-)-a-methylbenzyl methacrylate (MBMA, 269) is the first example of preparation of an optically active polymer consisting of a C-C backbone with chiral induction to the main chain. °... [Pg.676]

Isolates from Indian tobacco Q obelia inflata L.), as a cmde mixture of bases, have been recognized as expectorants. The same (or similar) fractions were also used both in the treatment of asthma and as emetics. The principal alkaloid in T. inflata is lobeline (49), an optically active tertiary amine which, unusual among alkaloids, is reported to readily undergo mutarotation, a process normally associated with sugars. Interestingly, it appears that the aryl-bearing side chains in (49) are derived from phenylalanine (25, R = H) (40). [Pg.539]

In aqueous solution, riboflavin has absorption at ca 220—225, 226, 371, 444 and 475 nm. Neutral aqueous solutions of riboflavin have a greenish yellow color and an intense yellowish green fluorescence with a maximum at ca 530 nm and a quantum yield of = 0.25 at pH 2.6 (10). Fluorescence disappears upon the addition of acid or alkah. The fluorescence is used in quantitative deterrninations. The optical activity of riboflavin in neutral and acid solutions is [a]=+56.5-59.5° (0.5%, dil HCl). In an alkaline solution, it depends upon the concentration, eg, [a] J =—112-122° (50 mg in 2 mL 0.1 Ai alcohohc NaOH diluted to 10 mL with water). Borate-containing solutions are strongly dextrorotatory, because borate complexes with the ribityl side chain of riboflavin = +340° (pH 12). [Pg.75]

For copolymers of structure I, for both types of side-chains, there is a striking similarity with the optical properties of the corresponding models the absorption and photoluminescence maxima of the polymers arc only 0.08-0.09 eV red-shifted relative to those of the models, as shown in Figure 16-9 (left) for the octyloxy-substituted compounds. The small shift can be readily explained by the fact that in the copolymers the chromophorcs are actually substituted by silylene units, which have a weakly electron-donating character. The shifts between absorption and luminescence maxima are exactly the same for polymers and models and the width of the emission bands is almost identical. The quantum yields are only slightly reduced in the polymers. These results confirm that the active chro-mophores are the PPV-type blocks and that the silylene unit is an efficient re-conjugation interrupter. [Pg.298]

Optically active polymers are potentially very useful in areas such as asymmetric catalysis, nonlinear optics, polarized photo and electroluminescence, and enantioselective separation and sensing.26 Transition metal coupling polymerization has also been applied to the synthesis of these polymers.27 For example, from the Ni(II)-catalyzed polymerization, a regioregular head-to-tail polymer 32 was obtained (Scheme 9.17).28 This polymer is optically active because of the optically active chiral side chains. [Pg.473]

Incorporation of chiral units into polymers generates optically active polymers.27 Two types of optically active polymers could be obtained according to where the chiral units reside optically active polymers with chirality derived from chiral side chains and optically active polymers with chirality derived from tire chiral main chain. The circular dichroism (CD) measurement of 32, an optically active polymer with chiral side chains, showed that the chiral substituents have induced main-chain chirality. The induced main-chain chirality disappeared at higher temperature and appeared upon cooling. This type of chiral conjugated polymer is potentially useful in reversing optical recording28 ... [Pg.479]

The strange amino-acid (4) is a fat version of phenylalanine (5) having a side chain which is rigid and inert, but which is also space filling rather than flat. Optically active (4) was needed to study peptide conformation and the biological activity of drugs. [Pg.112]

In Table IV some physical data and spectral characteristics of 6,7-secoberbines are listed. Only methyl corydalate (55) is optically active. Formula 55 presents the spatial structure of this compound, deduced by Nonaka et al. (65) and confirmed by Cushman et al. by both correlation with (+)-mesotetrahydrocorysamine (72) (<5S) and total synthesis (69). It is difficult to find common characteristic features in both the mass and H-NMR spectra of these alkaloids because they differ significantly from each other in their structures. On one hand, corydalic acid methyl ester (55) incorporates a saturated nitrogen heterocycle, while the three aromatic bases (56-58) differ in the character of the side chain nitrogen. For example, in mass fragmentation, ions of the following structures may be ascribed to the most intensive bands in the spectrum of 55 ... [Pg.253]

Polyacetylenes are the most important class of synthetic polymers containing conjugated carbon-carbon double bonds. Some optically active monomers have been used with the following conclusions. Polymers of 1-alkynes having a branched side-chain assume in solution a helical conformation. A chiral side-chain induces a predominant screw sense in these helices. In particular, for alkyl branching, it has been shown that (S) monomers lead to a left-handed screw sense. [Pg.141]

An optically active polymethacrylate (2) having a binaphthol moiety in the side chain was synthesized by radical polymerization. This polymer coated on silica gel resolved several racemates.50 However, no data on the influence of the stereoregularity of the main chain on resolution have been reported. The chiral recognition by this polymer may simply arise from the binaphthyl group. [Pg.165]

Helical polysilanes whose optical activity is induced by chiral side chains are particularly suitable chiroptical polymers for elucidating the inherent nature of the polymer helix since they embody a fluorophoric and chromophoric main chain, exhibiting intense UV, CD, and FL bands due to the Sia-Sia ... [Pg.211]

Another significant cooperativity effect in preferential helical screw sense optically active copolymers is the majority rule phenomenon.18bl8q In this case, the screw sense of a helical main chain with unequal proportions of opposite chirality enantiopure chiral side groups is controlled by the enantiomeric excess only. Since this phenomenon was first reported from poly-a-olefins made of vinyl co-monomers bearing nonenantiopure chiral moieties by Green et al.8b and Pino et al.,16b this majority rule has been established in... [Pg.226]

A helical arrangement within columns was also found for other metal 3-diketonate complexes provided with chiral side chains (32) by Serrano and co-workers.35,36 These compounds form rectangular columnar mesophases with helical order within the columns. A spin-coated sample of 32 showed a positive exciton-splitted signal in the CD spectra, which was interpreted as a left-handed (M) helix. Annealing of the film resulted in much higher optical activities and a shift of the absorption maxima. The observed optical changes clearly point to a chiral organization of the columns in the mesophase. [Pg.386]


See other pages where Optical activity side chain is mentioned: [Pg.34]    [Pg.654]    [Pg.34]    [Pg.654]    [Pg.439]    [Pg.144]    [Pg.30]    [Pg.96]    [Pg.29]    [Pg.14]    [Pg.114]    [Pg.89]    [Pg.165]    [Pg.83]    [Pg.158]    [Pg.565]    [Pg.261]    [Pg.279]    [Pg.824]    [Pg.162]    [Pg.211]    [Pg.216]    [Pg.218]    [Pg.222]    [Pg.224]    [Pg.239]    [Pg.244]    [Pg.248]    [Pg.253]    [Pg.274]    [Pg.416]   
See also in sourсe #XX -- [ Pg.33 , Pg.34 ]




SEARCH



© 2024 chempedia.info