Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shell higher olefin process catalysts

Shell Higher Olefin Process) plant (16,17). C -C alcohols are also produced by this process. Ethylene is first oligomerized to linear, even carbon—number alpha olefins using a nickel complex catalyst. After separation of portions of the a-olefins for sale, others, particularly C g and higher, are catalyticaHy isomerized to internal olefins, which are then disproportionated over a catalyst to a broad mixture of linear internal olefins. The desired fraction is... [Pg.459]

Shell Higher Olefins Process (SHOP). In the Shell ethylene oligomerization process (7), a nickel ligand catalyst is dissolved in a solvent such as 1,4-butanediol (Eig. 4). Ethylene is oligomerized on the catalyst to form a-olefins. Because a-olefins have low solubiUty in the solvent, they form a second Hquid phase. Once formed, olefins can have Htfle further reaction because most of them are no longer in contact with the catalyst. Three continuously stirred reactors operate at ca 120°C and ca 14 MPa (140 atm). Reactor conditions and catalyst addition rates allow Shell to vary the carbon distribution. [Pg.439]

The 0x0 process is employed to produce higher alcohols from linear and branched higher olefins. Using a catalyst that is highly selective for hydroformylation of linear olefins at the terminal carbon atom. Shell converts olefins from the Shell higher olefin process (SHOP) to alcohols. This results in a product that is up to 75—85% linear when a linear feedstock is employed. Other 0x0 processes, such as those employed by ICI, Exxon, and BASE (all in Europe), produce oxo-alcohols from a-olefin feedstocks such alcohols have a linearity of about 60%. Enichem, on the other hand, produces... [Pg.441]

In addition to the neutral nickel/phosphine complexes used in the Shell Higher Olefins Process (SHOP), cationic Ni-complexes such as [(mall)Ni(dppmo)][SbF6] (see Figure 5.2-7) have attracted some attention as highly selective and highly active catalysts for ethylene oligomerization to HAOs [106]. [Pg.249]

Catalysts based on nickel that dimerize or oligomerize a-olefins have been known for many years and are commercially valuable. The Shell higher olefin process (SHOP), for example, uses Ni(II) catalysts developed by Keim and coworkers such as 1.1 and 1.2 bearing P-O chelating ligands to oligomerize ethylene into higher olefins in the manufacture of surfactants, lubricants, and fine chemicals (Fig. 1) [9-11]. Late transition metals are more suited for the polymerization of... [Pg.181]

SHOP [Shell Higher Olefins Process] A process for producing a-olefins by oligomerizing ethylene, using a proprietary rhodium/phosphine catalyst. The a-olefins can then be iso-merized to internal olefins as required. Invented by W. Keim in the Institut fur Technische Chemie und Petrolchemie, Aachen, in the 1970s. The first plant was built in Geismar, LA, in 1979 the second in Stanlow, Cheshire, in 1982. Licensed worldwide by a consortium of Union Carbide, Davy-McKee, and Johnson Matthey. [Pg.244]

A very elegant solution to solve this problem is the introduction of either a permanent or a temporary phase boundary between the molecular catalyst and the product phase. The basic principle of multiphase catalysis has already found implementation on an industrial scale in the Shell higher olefin process (SHOP) and the Ruhrchemie/Rhdne-Poulenc propene hydroformylation process. Over the years, the idea of phase-separable catalysis has inspired many chemists to design new families of ligands and to develop new separation... [Pg.216]

Another approach is to separate the products from the homogeneous catalyst using a two phase liquid system. For example, this method is used in the oligomerization step of the Shell Higher Olefins Process for the manufacture of linear a-olefins.5,9-11,330 A polar nickel catalyst containing a P- chelate ligand is dissolved in a polar solvent e.g. 1,4-butanediol, which is immiscible with higher oc-olefins, and recovery of the catalyst is easily achieved by simple phase separation. [Pg.115]

Alkenes. At present alkene isomerization is an important step in the production of detergent alkylates (Shell higher olefin process see Sections 12.3 and 13.1.3).264 265 Ethylene oligomerization in the presence of a nickel(O) catalyst yields terminal olefins with a broad distribution range. C4-C6 and C2o+ alkenes, which are not suitable for direct alkylate production, are isomerized and subsequently undergo metathesis. Isomerization is presumably carried out over a MgO catalyst. [Pg.193]

Grubbs group [31, 32] developed another type of Ni-based catalyst. This neutral Ni-catalyst, based on salicylaldimine ligands, is active in ethene polymerisation without any co-activator and originated from the Shell higher olefin process (SHOP). Shortly thereafter another active neutral P,0-chelated nickel catalysts for polymerisation of ethene in emulsion was developed by Soula et al. [33, 34, 35]. The historical development of single site catalysts is represented in Fig. 1. [Pg.3]

This reaction was first used in petroleum reformation for the synthesis of higher olefins (Shell higher olefin process - SHOP), with nickel catalysts under high pressure and high temperatures. Nowadays, even polyenes with MW > 250,000 are produced industrially in this way. [Pg.171]

Nickel one-component catalysts (Scheme 1) for linear olefin oligomerization have been studied by Peuckert et al. (235). The OP nickel complexes are close models for the catalyst system in the Shell Higher Olefins Process... [Pg.259]

The recent accomplishments of near-edge X-ray absorption spectroscopy in catalysis studies are already quite impressive, in particular if one considers the limited availability of suitable X-ray spectrometers. Developments of catalytic interest have concerned the Shell Higher Olefin process, size effects, metal-support interaction, mono- and bimetallic catalysts (in particular the PtRe/Al203 system), the reactivity of supported metal catalysts, dynamical and in situ catalyst studies, and a variety of oxide and sulfide catalysts. Other catalytic problems are now coming within easy experimental reach, such as the study of sulfur poisoning and the nature of coking. [Pg.286]

Probably the first example of a process employing the biphasic concept is the Shell process for ethylene oligomerization in which the nickel catalyst and the ethylene reactant are dissolved in 1,4-butanediol, while the product, a mixture of linear alpha olefins, is insoluble and separates as a second (upper) liquid phase (see Fig. 7.1). This is the first step in the Shell Higher Olefins Process (SHOP), the largest single feed application of homogeneous catalysis [7]. [Pg.299]

Dimerisation of olefins is a major industrial process, and is carried out on a multi million ton scale annually.111 One of the most important methods is represented by the Shell Higher Olefin Process (SHOP), which can even be run under biphasic conditions. In the oligomerisation of ethylene, the catalyst is generated in situ in 1,4-butanediol from a nickel salt, Na[BH4] and a chelating ligand. The olefins formed in the reaction are immiscible with the polar solvent and are isolated by phase separation and subsequent distillation.[2]... [Pg.167]

The chelate effect is important in the oxidative additions of P—C bonds which, in the case of nickel, give P—O and P—N chelate complexes of the type used as ethylene oligomerization catalysts in the Shell higher olefin process (SHOP),91 for example,... [Pg.1194]

Shell manufactures a-olefins from ethylene by oligomerization with a nickel catalyst in a polar solvent such as ethylene glycol, under the conditions specified in Equation 27. This corresponds to the first part of the SHOP process (Shell Higher Olefin Process) described in Section 6.2.2. The world production is estimated to be over 1 Mt/a. [Pg.189]


See other pages where Shell higher olefin process catalysts is mentioned: [Pg.2929]    [Pg.2928]    [Pg.421]    [Pg.2929]    [Pg.2928]    [Pg.421]    [Pg.258]    [Pg.225]    [Pg.15]    [Pg.123]    [Pg.53]    [Pg.182]    [Pg.338]    [Pg.137]    [Pg.278]    [Pg.258]    [Pg.256]    [Pg.497]    [Pg.378]    [Pg.733]    [Pg.782]    [Pg.812]    [Pg.64]    [Pg.103]    [Pg.336]    [Pg.139]    [Pg.324]    [Pg.26]    [Pg.3]    [Pg.1243]    [Pg.84]   
See also in sourсe #XX -- [ Pg.306 , Pg.340 ]




SEARCH



Catalysts Shell catalyst

Catalysts processes

Higher Shell process

Higher catalyst

Higher olefins

Shell process

© 2024 chempedia.info