Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine protease with peptide reaction

Figure 3. Reaction of a serine protease with a peptide chloromethyl ketone. The side chain of the Pt residue of the inhibitor is shown interacting with the primary substrate binding subsite (SJ of the enzyme. Figure 3. Reaction of a serine protease with a peptide chloromethyl ketone. The side chain of the Pt residue of the inhibitor is shown interacting with the primary substrate binding subsite (SJ of the enzyme.
Reaction of Serine Proteases with Aza-Amino Acid and Aza-Peptide Derivatives... [Pg.208]

As discussed above, proteases are peptide bond hydrolases and act as catalysts in this reaction. Consequently, as catalysts they also have the potential to catalyze the reverse reaction, the formation of a peptide bond. Peptide synthesis with proteases can occur via one of two routes either in an equilibrium controlled or a kinetically controlled manner 60). In the kinetically controlled process, the enzyme acts as a transferase. The protease catalyzes the transfer of an acyl group to a nucleophile. This requires an activated substrate preferably in the form of an ester and a protected P carboxyl group. This process occurs through an acyl covalent intermediate. Hence, for kineticmly controlled reactions the eii me must go through an acyl intermediate in its mechanism and thus only serine and cysteine proteases are of use. In equilibrium controlled synthesis, the enzyme serves omy to expedite the rate at which the equilibrium is reached, however, the position of the equilibrium is unaffected by the protease. [Pg.75]

An enzyme reaction intermediate (Enz—O—C(0)R or Enz—S—C(O)R), formed by a carboxyl group transfer (e.g., from a peptide bond or ester) to a hydroxyl or thiol group of an active-site amino acyl residue of the enzyme. Such intermediates are formed in reactions catalyzed by serine proteases transglutaminase, and formylglyci-namide ribonucleotide amidotransferase . Acyl-enzyme intermediates often can be isolated at low temperatures, low pH, or a combination of both. For acyl-seryl derivatives, deacylation at a pH value of 2 is about 10 -fold slower than at the optimal pH. A primary isotope effect can frequently be observed with a C-labeled substrate. If an amide substrate is used, it is possible that a secondary isotope effect may be observed as welF. See also Active Site Titration Serpins (Inhibitory Mechanism)... [Pg.29]

The optimum yield of a condensation product is obtained at the pH where Ka has a maximum. For peptide synthesis with serine proteases this coincides with the pH where the enzyme kinetic properties have their maxima. For the synthesis of penicillins with penicillin amidase, or esters with serine proteases or esterases, the pH of maximum product yield is much lower than the pH optimum of the enzymes. For penicillin amidase the pH stability is also markedly reduced at pH 4-5. Thus, in these cases, thermodynamically controlled processes for the synthesis of the condensation products are not favorable. When these enzymes are used as catalysts in thermodynamically controlled hydrolysis reactions an increase in pH increases the product yield. Penicilhn hydrolysis is generally carried out at pH about 8.0, where the enzyme has its optimum. At this pH the equiUbrium yield of hydrolysis product is about 97%. It could be further increased by increasing the pH. Due to the limited stability of the enzyme and the product 6-aminopenicillanic acid at pH>8, a higher pH is not used in the biotechnological process. [Pg.369]

Peptides with C-terminal phosphonates, initially reported to have antibacterial properties, have also been found to possess inhibitory properties toward serine proteases)28 The synthesis of peptide phosphonates (Section 15.1.8) usually requires protection of the phos-phonic moiety as a diester, followed by selective deprotection in the final stage. The importance of peptide thiols (Section 15.1.9) is exemplified by captopril, an orally active angiotensin converting enzyme inhibitor used as a treatment for hypertension)29 These peptide thiols are prepared by the reaction of sulfanylalkanoyl amino acids with a-amino esters followed by deprotection of carboxy and sulfanyl groups. Other peptide thiols have been reported to be inhibitors of zinc metalloproteases, collagenases, and aminopeptidases. [Pg.3]

Peptide thioesters (Section 15.1.10) are generally prepared by coupling protected amino acids or peptides with thiols and are used for enzymatic hydrolysis. Peptide dithioesters, used to study the structures of endothiopeptides (Section 15.1.11), may be prepared by the reaction of peptide nitriles with thiols followed by thiolysis (Pinner reaction). Peptide vinyl sulfones (Section 15.1.12), inhibitors of various cysteine proteases, are prepared from N-protected C-terminal aldehydes with sulfonylphosphonates. Peptide nitriles (Section 15.1.13) prepared by dehydration of peptide amides, acylation of a-amino nitriles, or the reaction of Mannich adducts with alkali cyanides, are relatively weak inhibitors of serine proteases. [Pg.3]

Most peptidyl a,a-difluoroalkyl ketones are actually extended chains based on statone, rather than simple difluoromethyl ketones. The statone derivatives are based on pepstatin, which is an extremely potent peptide inhibitor of aspartic proteases. The difluoro derivatives of statone take advantage of both the electronegativity of fluorine and the potential for additional interactions between the protease and structures on the leaving group side of the inhibitor. 15 This dual nature is part of what makes a,a-difluoroalkyl ketones effective inhibitors of aspartyl proteases as well as serine proteases. There are three main methods of synthesizing peptidyl a,a-difluoroalkyl ketones (1) the Reformatsky reaction with peptide aldehydes (Section 15.1.4.2.1), (2) a modified Dakin-West reaction (Section 15.1.4.2.2), and (3) a Henry nitro-aldol condensation (Section 15.1.4.2.3). [Pg.231]

The stereochemical aspects of peptide hydrolysis catalyzed by chymotrypsin and related serine proteases has been recently analyzed with respect to requirements for stereoelectronic control of bond cleavage and this analysis has led to a much more complete understanding of the reaction mechanism (9-14). [Pg.179]

Activation reactions catalyzed by serine proteases (including kallikreins) are an example of limited proteolysis in which the hydrolysis is limited to one or two particular peptide bonds. Hydrolysis of peptide bonds starts with the oxygen atom of the hydroxyl group of the serine residue that attacks the carbonyl carbon atom of the susceptible peptide bond. At the same time, the serine transfers a proton first to the histidine residue of the catalytic triad and then to the nitrogen atom of the susceptible peptide bond, which is then cleaved and released. The other part of the substrate is now covalently bound to the serine by an ester bond. The charge that develops at this stage is partially neutralized by the third (asparate) residue of the catalytic triad. This process is followed by deacylation, in which the histidine draws a... [Pg.27]

Peptide Chloromethyl Ketones. Peptide chloromethyl ketone inhibitors have been studied extensively and a fairly detailed picture of the inhibition reaction (see Figure 3) has emerged from numerous chemical and crystallographic studies (30,31). The inhibitor resembles a serine protease substrate with the exception that the scissile peptide bond of the substrate is replaced with a chloromethyl ketone functional group in the inhibitor. The inhibitor binds to the serine protease in the extended substrate binding site and the reactive chloromethyl ketone functional group is placed then in the proper position to alkylate the active-site histidine residue. In addition, the serine OH reacts with the inhibitor carbonyl group to form a hemiketal. [Pg.351]

Peptide Halomethyl Ketones While TPCK and TLCK represented a major advance in modifying active site residues in serine proteases, slow and relatively nonspecific reaction was a problem. The development of tripeptide halomethyl ketones provided a major advance in the value of such derivatives as presented in some specific examples below. However, even with these derivatives, reactions occur with unexpected enzymes. More general information can be obtained from the following references Poulos, XL., Alden, R.A., Rreer, S.X. et al.. Polypeptide halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate. X-ray crystallographic comparison of lysine- and... [Pg.344]

Trypsin was named more than 100 years ago. It and chymotrypsin were among the first enzymes to be crystallized, have their amino acid sequences determined, and have their three-dimensional structure outlined by x-ray diffraction. Furthermore, both enzymes hydrolyze not only proteins and peptides but a variety of synthetic esters, amides, and anhydrides whose hydrolysis rates can be measured conveniently, precisely and, in some instances, extremely rapidly. As a result, few enzymes have received more attention from those concerned with enzyme kinetics and reaction mechanisms. The techniques developed by the pioneers in these various fields have enabled other serine proteases to be characterized rapidly, and the literature on this group of enzymes has become immense. It might be concluded that knowledge of serine proteases is approaching completeness and that little remains but to fill in minor details. [Pg.187]

Directed evolution has also been very effective for increasing enzyme activity in organic solvents 14> For example, the serine protease subtilisin can catalyze specific peptide syntheses and transesterification reactions, but organic solvents are required to drive the reaction towards synthesis. Sequential rounds of error-prone PCR and visual screening yielded a subtilisin variant with twelve amino acid substitutions that was 471 times more active than wild-type in 60% dimethylforma-mide (DMF)[145- 22° this enzyme is much more effective for peptide and polymer synthesis. [Pg.128]


See other pages where Serine protease with peptide reaction is mentioned: [Pg.39]    [Pg.578]    [Pg.72]    [Pg.345]    [Pg.1462]    [Pg.359]    [Pg.29]    [Pg.343]    [Pg.54]    [Pg.742]    [Pg.278]    [Pg.218]    [Pg.481]    [Pg.172]    [Pg.316]    [Pg.316]    [Pg.247]    [Pg.176]    [Pg.344]    [Pg.345]    [Pg.154]    [Pg.1072]    [Pg.12]    [Pg.481]    [Pg.250]    [Pg.236]    [Pg.729]    [Pg.15]    [Pg.132]    [Pg.377]    [Pg.837]    [Pg.696]    [Pg.218]    [Pg.26]   
See also in sourсe #XX -- [ Pg.357 ]




SEARCH



Serin proteases

Serine protease

Serine protease with peptide

© 2024 chempedia.info