Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine elastase

Pancreatic elastase (3.4.21.36) Pancreatopeptidase E, Elaszym, serine elastase Calcium Bowman-Birk inhibitor [7], chicken ovoinhibitor [47], DFP [26], elastatinal [147], methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone (MPCMK) [148], PMSF [26], soybean trypsin inhibitor [7,51]... [Pg.88]

INHIBITORS - The search for new agents which modify the rheumatic process has recently been oriented toward finding inhibitors of the enzymes directly involved in joint destruction. These Include inhibitors of the serine (elastase, cathepsin G, plasminogen activator) and metallo (collagenase, non-collagenolytic) proteinases. These compounds have been derived from both natural and synthetic sources. [Pg.222]

Elastase-like proteinases are serine proteinases that recognized peptide residues with linear aliphatic side chains (alanyl, valyl, leucyl or isoleucyl residues) and that effect hydrolysis of the polypeptide chain on the carboxy-terminal side of these residues. Examples of elastase-like proteinase are pancreatic elastase, neutrophil elastase and proteinase-3. [Pg.457]

The serine proteases are the most extensively studied class of enzymes. These enzymes are characterized by the presence of a unique serine amino acid. Two major evolutionary families are presented in this class. The bacterial protease subtilisin and the trypsin family, which includes the enzymes trypsin, chymotrypsin, elastase as well as thrombin, plasmin, and others involved in a diverse range of cellular functions including digestion, blood clotting, hormone production, and complement activation. The trypsin family catalyzes the reaction ... [Pg.170]

OCi-Antitrypsin is the major serine protease inhibitor of plasma, in particular inhibiting the elastase of neu-... [Pg.597]

Serine proteases usually show primary specificity (occupation of subsite Si) for positively charged arginine or lysine (trypsin, plasmin, plasminogen activators, thrombin), large hydrophobic side chains of phenylalanine, tyrosine, and tryptophan (chymotrypsin, cathepsin G, chymase, and subtilisin), or small aliphatic side chains (elastases). Nevertheless, there are a large number of variations and in many cases, other subsites like S2 and S3 are more discriminating while maintaining the... [Pg.360]

Finally, coumarin derivatives may act as general inhibitors of serine proteases or as specific inhibitors of human leukocyte elastase, depending on the nature of the substituents, through two distinct mechanisms, suicide substrates (a-chymotrypsin)... [Pg.365]

Vergely, I. Laugaa, P. Reboud-Ravaux, M. Interaction of human leukocyte elastase with a /V-aryl azetidinone suicide substrate conformational analyses based on the mechanism of action of serine proteinases. j. Mol. Graphics 1996, 14, 158-167. [Pg.384]

Somatostatin (sstl—sst5) Nonreceptor serine/threonine kinases Elastase... [Pg.33]

A different strategy for measuring protease activity is based on the property of xanthene dyes to form H-type dimers (see Sect. 6.2.3) when they are in close proximity. These dimers are accompanied with a characteristic quenching of their fluorescence and, particularly for rhodamines, with a blue shift in the absorption spectrum [121, 122]. The probe D-NorFES-D designed to measure activity of elastase in HL-60 cells consists of an undecapeptide derivatized with one tetramethylrhodamine dye on each side. The sequence contains proline residues to create a bent structure and bring the two fluoro-phores in close proximity. Intact D-NorFES-D shows 90% of its fluorescence quenched plus a blue shift of the absorption spectrum. After addition of the serine protease elastase, an increase in the fluorescence and a bathochromic shift of the absorption spectrum is observed, resulting in an increase in the emission ratio [80],... [Pg.268]

This is a 29-kDa protein that has NH 2-terminal sequence homology with elastase and cathepsin G. However, it contains glycine and not serine at the predicted catalytic site, and so lacks protease and peptidase activity. Purified azurocidin kills a range of organisms (e.g. E. coli, S.faecalis, and C. albicans) in vitro. It functions optimally at pH 5.5 and in conditions of low ionic strength. [Pg.71]

The /3-lactam structure can also react with active-serine hydrolases other than PBPs and /3-lactamases. It has been shown that appropriately substituted cephalosporins (e.g., 5.18) are potent mechanism-based inactivators of human leukocyte elastase (HLE, EC 3.4.21.37), a serine endopeptidase involved in the pathogenesis of pulmonary emphysema and other connective tissue diseases [57-60]. Subsequent work has demonstrated that substituted /3-lactams such as 5.19 or 5.20 are more stable HLE inhibitors and have improved potencies [61-63]. [Pg.195]

Serine proteases, see Trypsin, Chymotrypsin, Elastase, Strepto-myces griseus proteases A and B, or Subtilisin Southern bean mosaic virus protein (Abad-Zapatero et al., 1980) Jellyroll Greek key (3 barrel (Fig. 81)... [Pg.282]

Thus, the use of subzero temperatures in cryosolvents has allowed a series of intermediates in the elastase reaction to be identified, characterized, and stabilized. Temporal resolution of the significant steps in this reaction was difficult to achieve by any other method. Analogous results with other serine proteases suggest that these results are general for this class of enzymes. [Pg.258]

The presence of a covalent acyl-enzyme intermediate in the catalytic reaction of the serine proteases made this class of enzymes an attractive candidate for the initial attempt at using subzero temperatures to study an enzymatic mechanism. Elastase was chosen because it is easy to crystallize, diffracts to high resolution, has an active site which is accessible to small molecules diffusing through the crystal lattice, and is stable in high concentrations of cryoprotective solvents. The strategy used in the elastase experiment was to first determine in solution the exact conditions of temperature, organic solvent, and proton activity needed to stabilize an acyl-enzyme intermediate for sufficient time for X-ray data collection, and then to prepare the complex in the preformed, cooled crystal. Solution studies were carried out in the laboratory of Professor A. L. Fink, and were summarized in Section II,A,3. Briefly, it was shown that the chromophoric substrate -carbobenzoxy-L-alanyl-/>-nitrophenyl ester would react with elastase in both solution and in crystals in 70 30 methanol-water at pH 5.2 to form a productive covalent complex. These... [Pg.330]

Fig. 18. The active site region of the electron density difference map between N-carbobenzoxy-L-alanine-elastase at —SS C and native elastase at the same temperature. The resolution is 3.5 A. The bilobed feature is consistent with the binding of the alanyi portion of the substrate to the oxygen of the catalytic serine, with weak interaction of the carbobenzoxy group to the surface of the enzyme. Fig. 18. The active site region of the electron density difference map between N-carbobenzoxy-L-alanine-elastase at —SS C and native elastase at the same temperature. The resolution is 3.5 A. The bilobed feature is consistent with the binding of the alanyi portion of the substrate to the oxygen of the catalytic serine, with weak interaction of the carbobenzoxy group to the surface of the enzyme.
A large group of proteinases contain serine in their active center. The serine proteases include, for example, the digestive enzymes trypsin, chymotrypsin, and elastase (see pp. 94 and 268), many coagulation factors (see p. 290), and the fibrinolytic enzyme plos-min and its activators (see p. 292). [Pg.176]

Trypsin, chymotrypsin, and elastase are en-dopeptidases that belong to the group of serine proteinases (see p. 176). Trypsin hydrolyzes specific peptide bonds on the C side of the basic amino acids Arg and Lys, while chymotrypsin prefers peptide bonds of the apolar amino acids Tyr, Trp, Phe, and Leu (see p. 94). [Pg.268]

The digestive enzymes trypsin, chymotrypsin, elastase, and proteinase E are related serine proteases. All three are synthesized in the pancreas which secretes 5-10 g per day of proteins, mostly the inactive proenzymes (zymogens) of digestive enzymes.191,192... [Pg.609]

From study of peptides formed by partial hydrolysis of the 32P-labeled chymotrypsin, the sequence of amino acids surrounding the reactive serine was established and serine 195 was identified as the residue whose side chain hydroxyl group became phosphorylated. The same sequence Gly-Asp-Ser-Gly was soon discovered around reactive serine residues in trypsin, thrombin, elastase, and in the trypsin-like cocoonase used by silkmoths to escape from their cocoons.198 We know now that these are only a few of the enzymes in a very large family of serine proteases, most of which have related active site sequences.199 200 Among these are thrombin and other enzymes of the blood-clotting cascade (Fig. 12-17), proteases of lysosomes, and secreted proteases. [Pg.610]

Isocoumarins inactivate many serine proteases. For example, 7-amino-4-chloro-3-methoxyisocoumarin acylates serine 195 of elastases as follows.s... [Pg.623]

Several classes of (3-lactamases, often encoded in transmissible plasmids, have spread worldwide rapidly among bacteria, seriously decreasing the effectivenss of penicillins and other (3-lactam anti-biotics.t y Most (3-lactamases (classes A and C) contain an active site serine and are thought to have evolved from the dd transpeptidases, but the B typey has a catalytic Zn2+. The latter, as well as a recently discovered type A enzyme,2 hydrolyze imipenem, currently one of the antibiotics of last resort used to treat infections by penicillin-resistant bacteria. Some (3-lactam antibiotics are also powerful inhibitors of (3-lactamases.U/aa/bb These antibiotics may also have uses in inhibition of serine proteasesCC/dd such as elastase. Some antibiotic-resistant staphylococci produce an extra penicillin-binding protein that protects them from beta lactams.ee Because of antibiotic resistance the isolation of antibiotics from mixed populations of microbes from soil, swamps, and lakes continues. Renewed efforts are being... [Pg.1165]


See other pages where Serine elastase is mentioned: [Pg.110]    [Pg.210]    [Pg.194]    [Pg.194]    [Pg.106]    [Pg.108]    [Pg.673]    [Pg.589]    [Pg.156]    [Pg.104]    [Pg.361]    [Pg.372]    [Pg.133]    [Pg.47]    [Pg.268]    [Pg.353]    [Pg.355]    [Pg.176]    [Pg.92]    [Pg.97]    [Pg.90]    [Pg.388]    [Pg.248]    [Pg.110]    [Pg.274]    [Pg.611]    [Pg.617]    [Pg.628]    [Pg.629]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



Elastase

Elastase active serine, mechanism

Elastase, serine function

Plant Kunitz serine protease inhibitor effects on elastase

Serine protease elastase

Squash family serine protease inhibitor effects on elastase

© 2024 chempedia.info