Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine catalytic mechanism

Engineering Substrate Specificity. Although the serine proteases use a common catalytic mechanism, the enzymes have a wide variety of substrate specificities. For example, the natural variant subtiHsins of B. amyloliquefaciens (subtiHsin BPN J and B. licheniformis (subtiHsin Carlsberg) possess very similar stmctures and sequences where 86 of 275 amino acids are identical, but have different catalytic efficiencies, toward tetraamino acid -nitroanilide substrates (67). [Pg.203]

Convergent evolution has produced two different serine proteinoses with similar catalytic mechanisms... [Pg.210]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]

Proteases, which originally catalyze the amidic carbon-nitrogen bond breaking, also catalyze ester hydrolysis. However, in this case, the catalytic mechanism is hkely very similar and consists in the preliminary attack of the active site serine on the carbonyl carbon atom [103]. [Pg.113]

Catalysis by enzymes that proceeds via a unique reaction mechanism typically occurs when the transition state intermediate forms a covalent bond with the enzyme (covalent catalysis). The catalytic mechanism of the serine protease chymotrypsin (Figure 7-7) illustrates how an enzyme utilizes covalent catalysis to provide a unique reaction pathway. [Pg.63]

The starting point for much of the work described in this article is the idea that quinone methides (QMs) are the electrophilic species that are generated from ortho-hydro-xybenzyl halides during the relatively selective modification of tryptophan residues in proteins. Therefore, a series of suicide substrates (a subtype of mechanism-based inhibitors) that produce quinone or quinonimine methides (QIMs) have been designed to inhibit enzymes. The concept of mechanism-based inhibitors was very appealing and has been widely applied. The present review will be focused on the inhibition of mammalian serine proteases and bacterial serine (3-lactamases by suicide inhibitors. These very different classes of enzymes have however an analogous step in their catalytic mechanism, the formation of an acyl-enzyme intermediate. Several studies have examined the possible use of quinone or quinonimine methides as the latent... [Pg.357]

SERINE PROTEASES MINIMAL SCHEMES CATALYTIC MECHANISMS... [Pg.359]

Polgar, L. Catalytic mechanisms of serine and threonine peptidases. In Handbook of Proteolytic Enzymes, 2nd edition Barrett, A. J. Rawlings, N. D. Woessner, J. F., Eds. Elsevier Academic Press Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo 2004, pp 1441-1448. [Pg.379]

Remarkably, Brassica napus pollen was reported to have a 22 kDa cutinase that cross-reacted with antibodies prepared against F. solani f. pisi cutinase [134]. Although a 22 kDa and a 42 kDa protein that catalyzed hydrolysis of p-nitrophenyl butyrate were found in this pollen, only the former catalyzed cutin hydrolysis. Immunofluorescence microscopic examination suggested that the 22 kDa protein was located in the intine. Since the nature of the catalytic mechanism of this enzyme has not been elucidated, it is not clear whether this represents a serine hydrolase indicating that plants may have serine and thiol cutinases. The role of the pollen enzyme in controlling compatibility remains to be established. [Pg.36]

The catalytic mechanism of the subtilisins is the same as that of the digestive enzymes trypsin and chymotrypsin as well as that of enzymes in the blood clotting cascade, reproduction and other mammalian enzymes. The enzymes are known as serine proteases due to the serine residue which is crucial for catalysis (Kraut, 1977 and Polgar, 1987)... [Pg.150]

These three catalytic functionalities are similar in practically all hydrolytic enzymes, but the actual functional groups performing the reactions differ among hydrolases. Based on the structures of their catalytic sites, hydrolases can be divided into five classes, namely serine hydrolases, threonine hydrolases, cysteine hydrolases, aspartic hydrolases, and metallohydrolases, to which the similarly acting calcium-dependent hydrolases can be added. Hydrolases of yet unknown catalytic mechanism also exist. [Pg.67]

Other serine hydrolases such as cholinesterases, carboxylesterases, lipases, and fl-lactamases of classes A, C, and D have a hydrolytic mechanism similar to that of serine peptidases [25-27], The catalytic mechanism also involves an acylation and a deacylation step at a serine residue in the active center (see Fig. 3.3). All serine hydrolases have in common that they are inhibited by covalent attachment of diisopropyl phosphorofluoridate (3.2) to the catalytic serine residue. The catalytic site of esterases and lipases has been less extensively investigated than that of serine peptidases, but much evidence has accumulated that they also contain a catalytic triad composed of serine, histidine, and aspartate or glutamate (Table 3.1). [Pg.74]

M. Galleni, J. Lamotte-Brasseur, X. Raquet, A. Dubus, D. Monnaie, J. R. Knox, J. M. Frere, The Enigmatic Catalytic Mechanism of Active-Site Serine /3-Lactamases , Bio-chem. Pharmacol. 1995,49, 1171-1178. [Pg.93]

Lactamases (EC 3.5.2.6) inactivate /3-lactam antibiotics by hydrolyzing the amide bond (Fig. 5.1, Pathway b). These enzymes are the most important ones in the bacterial defense against /3-lactam antibiotics [15]. On the basis of catalytic mechanism, /3-lactamases can be subdivided into two major groups, namely Zn2+-containing metalloproteins (class B), and active-serine enzymes, which are subdivided into classes A, C, and D based on their amino acid sequences (see Chapt. 2). The metallo-enzymes are produced by only a relatively small number of pathogenic strains, but represent a potential threat for the future. Indeed, they are able to hydrolyze efficiently carbape-nems, which generally escape the activity of the more common serine-/3-lac-tamases [16] [17]. At present, however, most of the resistance of bacteria to /3-lactam antibiotics is due to the activity of serine-/3-lactamases. These enzymes hydrolyze the /3-lactam moiety via an acyl-enzyme intermediate similar to that formed by transpeptidases. The difference in the catalytic pathways of the two enzymes is merely quantitative (Fig. 5.1, Pathways a and b). [Pg.189]

Whereas standard proteases use serine, cysteine, aspartate, or metals to cleave peptide bonds, the proteasome employs an unusual catalytic mechanism. N-terminal threonine residues are generated by self-removal of short peptide extensions from the active yS-subunits and act as nucleophiles during peptide-bond hydrolysis [23]. Given its unusual catalytic mechanism, it is not surprising that there are highly specific inhibitors of the proteasome. The fungal metabolite lactacystin and the bacterial product epoxomicin covalently modify the active-site threonines and in-... [Pg.222]

Figure 3.3 (a) Covalent catalysis the catalytic mechanism of a serine protease. The enzyme acetylcholinesterase is chosen to illustrate the mechanism because it is an important enzyme in the nervous system. Catalysis occurs in three stages (i) binding of acetyl choline (ii) release of choline (iii) hydrolysis of acetyl group from the enzyme to produce acetate, (b) Mechanism of inhibition of serine proteases by diisopropylfluorophosphonate. See text for details. [Pg.40]

The catalytic mechanism in this class is based upon similar chemical principles as the mechanism of the serine proteinases. A cysteine residue in the active site is activated by a histidine imidazolium side chain and carries out a nucleophilic attack on the carbonyl carbon of the scissile peptide bond with the complex going through an acyl intermediate transition state (28,29). Certain members of this class of enzymes have pH optima in the acidic range and... [Pg.64]

Lipases belong to the subclass of serine hydrolases, and their structure and reaction mechanism are well understood. Their common a/p-hydrolase enzyme fold is characterized by an a-helix that is connected with a sharp turn, referred to as the nucleophilic elbow, to the middle of a P-sheet array. All lipases possess an identical catalytic triad consisting of an Asp or Gin residue, a His and a nucleophilic Ser [14]. The latter residue is located at the nucleophilic elbow and is found in the middle of the highly conserved Gly—AAl—Ser—AA2—Gly sequence in which amino acids AAl and AA2 can vary. The His residue is spatially located at one side of the Ser residue, whereas at the opposite side of the Ser a negative charge can be stabilized in the so-called oxyanion hole by a series of hydrogen bond interactions. The catalytic mechanism of the class of a/P-hydrolases is briefly discussed below using CALB as a typical example, since this is the most commonly applied lipase in polymerization reactions [15]. [Pg.57]

T. L. Bullock, K. Breddam, S. J. Remington, Peptide aldehyde complexes with wheat serine carboxypeptidase II, implications for the catalytic mechanism and substrate specificity. /. Mol. Biol. 1996, 255, 714-725. [Pg.340]

Irreversible inhibitors often provide clues to the nature of the active site. Enzymes that are inhibited by iodo-acetamide, for example, frequently have a cysteine in the active site, and the cysteinyl sulfhydryl group often plays an essential role in the catalytic mechanism (fig. 7.18). An example is glyceraldehyde 3-phosphate dehydrogenase, in which the catalytic mechanism begins with a reaction of the cysteine with the aldehyde substrate (see fig. 12.21). As we discuss in chapter 8, trypsin and many related proteolytic enzymes are inhibited irreversibly by diisopropyl-fluorophosphate (fig. 7.18), which reacts with a critical serine residue in the active site. [Pg.150]


See other pages where Serine catalytic mechanism is mentioned: [Pg.322]    [Pg.206]    [Pg.210]    [Pg.217]    [Pg.341]    [Pg.415]    [Pg.466]    [Pg.514]    [Pg.102]    [Pg.968]    [Pg.1284]    [Pg.480]    [Pg.36]    [Pg.228]    [Pg.31]    [Pg.31]    [Pg.78]    [Pg.243]    [Pg.257]    [Pg.254]    [Pg.40]    [Pg.41]    [Pg.742]    [Pg.650]    [Pg.26]    [Pg.548]    [Pg.192]   
See also in sourсe #XX -- [ Pg.805 , Pg.806 ]




SEARCH



Catalytic mechanism

Catalytic serine

Serine Proteases Minimal Schemes Catalytic Mechanisms Suicide Inhibition

Serine protease catalytic mechanisms

© 2024 chempedia.info