Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism hydrolytic

Keywords Degradation mechanism Hydrolytic degradation Autocatalytic degradation Bulk erosion Surface erosion Strength and mass loss profile Critical device dimension Hydrolysis... [Pg.7]

Perhaps the most extensively studied catalytic reaction in acpreous solutions is the metal-ion catalysed hydrolysis of carboxylate esters, phosphate esters , phosphate diesters, amides and nittiles". Inspired by hydrolytic metalloenzymes, a multitude of different metal-ion complexes have been prepared and analysed with respect to their hydrolytic activity. Unfortunately, the exact mechanism by which these complexes operate is not completely clarified. The most important role of the catalyst is coordination of a hydroxide ion that is acting as a nucleophile. The extent of activation of tire substrate througji coordination to the Lewis-acidic metal centre is still unclear and probably varies from one substrate to another. For monodentate substrates this interaction is not very efficient. Only a few quantitative studies have been published. Chan et al. reported an equilibrium constant for coordination of the amide carbonyl group of... [Pg.46]

Chemical, or abiotic, transformations are an important fate of many pesticides. Such transformations are ubiquitous, occurring in either aqueous solution or sorbed to surfaces. Rates can vary dramatically depending on the reaction mechanism, chemical stmcture, and relative concentrations of such catalysts as protons, hydroxyl ions, transition metals, and clay particles. Chemical transformations can be genetically classified as hydrolytic, photolytic, or redox reactions (transfer of electrons). [Pg.218]

Polyarylates are sensitive to heat. Although mechanical properties are not much affected, colors darken. Properties are given in Table 8. Hydrolytic stability and resistance to organic solvents are fair. [Pg.269]

Stepwise thermal- or base-eatalysed hydrolytic depolymerisation initiated from the hemi-formal chain end with the evolution of formaldehyde. The main reasons for end-capping and copolymerisation mechanisms described above are carried out in order to minimise this reaction. [Pg.536]

Although the previous two sections of this chapter emphasized hydrolytic processes, two mechanisms that led to O- or N-acylation were considered. In the discussion of acid-catalyzed ester hydrolysis, it was pointed out that this reaction is reversible (p. 475). Thus, it is possible to acylate alcohols by reaction with a carboxyhc acid. To drive the reaction forward, the alcohol is usually used in large excess, and it may also be necessary to remove water as it is formed. This can be done by azeotropic distillation in some cases. [Pg.484]

The mechanism of chemical adhesion is probably best studied and demonstrated by the use of silanes as adhesion promoters. However, it must be emphasized that the formation of chemical bonds may not be the sole mechanism leading to adhesion. Details of the chemical bonding theory along with other more complex theories that particularly apply to silanes have been reviewed [48,63]. These are the Deformable Layer Hypothesis where the interfacial region allows stress relaxation to occur, the Restrained Layer Hypothesis in which an interphase of intermediate modulus is required for stress transfer, the Reversible Hydrolytic Bonding mechanism which combines the chemical bonding concept with stress relaxation through reversible hydrolysis and condensation reactions. [Pg.696]

The mechanism for the conversion of the A -oxide (94) to the o-methylaminophenylquinoxaline (96) involves an initial protonation of the A -oxide function. This enhances the electrophilic reactivity of the a-carbon atom which then effects an intramolecular electrophilic substitution at an ortho position of the anilide ring to give the spiro-lactam (98). Hydrolytic ring cleavage of (98) gives the acid (99), which undergoes ready dehydration and decarboxylation to (96), the availability of the cyclic transition state facilitating these processes. ... [Pg.236]

For the most common series of corrosive agents, water, steam, acids, alkalis and salts, the hydrolytic processes peculiar to each determine the mechanism of attack. Thus, under the right circumstances, hydrolytic attack on the bridging oxygens can occur in the following way ... [Pg.879]

Uncovering of the three dimentional structure of catalytic groups at the active site of an enzyme allows to theorize the catalytic mechanism, and the theory accelerates the designing of model systems. Examples of such enzymes are zinc ion containing carboxypeptidase A 1-5) and carbonic anhydrase6-11. There are many other zinc enzymes with a variety of catalytic functions. For example, alcohol dehydrogenase is also a zinc enzyme and the subject of intensive model studies. However, the topics of this review will be confined to the model studies of the former hydrolytic metallo-enzymes. [Pg.145]

Subsequent steps of the process involve the decomposition of ammonium peroxometalates, (NH4)3Ta08 and (NH4)3Ta08, which takes place according to a hydrolytic mechanism. Belov et al. [512] presents the following interactions as occurring by different mechanisms in different media. Hydrolysis in acidic media at pH < 3 appears to occur with the separation of oxygen, as shown in Equation (152) ... [Pg.305]

Due to the high reaction temperatures required during the last stages of these syntheses, side reactions cannot be avoided. Acetaldehyde, carboxyl endgroups, and vinyl endgroups are formed during PET and PEN synthesis. The formation of 2,2/-oxydiethylene moieties in polymer chains by etherification of hydroxyl endgroups is also a well-known side reaction of EG polyester syntheses.264 These reactions should be carefully controlled since they can exert an important influence on polymer properties such as Ts, mechanical properties, hydrolytic stability, and discoloration. [Pg.71]

Siloxane containing interpenetrating networks (IPN) have also been synthesized and some properties were reported 59,354 356>. However, they have not received much attention. Preparation and characterization of IPNs based on PDMS-polystyrene 354), PDMS-poly(methyl methacrylate) 354), polysiloxane-epoxy systems 355) and PDMS-polyurethane 356) were described. These materials all displayed two-phase morphologies, but only minor improvements were obtained over the physical and mechanical properties of the parent materials. This may be due to the difficulties encountered in controlling the structure and morphology of these IPN systems. Siloxane modified polyamide, polyester, polyolefin and various polyurethane based IPN materials are commercially available 59). Incorporation of siloxanes into these systems was reported to increase the hydrolytic stability, surface release, electrical properties of the base polymers and also to reduce the surface wear and friction due to the lubricating action of PDMS chains 59). [Pg.62]

To gain an insight into the likely hydrolytic behavior of sulfated simple sugars and polysaccharides, Brimacombe, Foster, Hancock, Overend, and Stacey carried out a rigorous set of experiments with the cyclic sulfates of cyclohexane cis-and trims-1,2-diol as model compounds. The results were interpreted on the reasonable assumption that, in all cases, the cyclic sulfates initially afford a diol monosulfate. Examples of both S-0 and C-0 bond cleavage were encountered. A qualitative reaction mechanism was proposed for use as a working hypothesis for the hydrolysis of sugar sulfates. [Pg.16]


See other pages where Mechanism hydrolytic is mentioned: [Pg.749]    [Pg.161]    [Pg.161]    [Pg.339]    [Pg.854]    [Pg.749]    [Pg.161]    [Pg.161]    [Pg.339]    [Pg.854]    [Pg.315]    [Pg.436]    [Pg.133]    [Pg.533]    [Pg.334]    [Pg.234]    [Pg.404]    [Pg.218]    [Pg.62]    [Pg.331]    [Pg.348]    [Pg.99]    [Pg.156]    [Pg.142]    [Pg.275]    [Pg.542]    [Pg.478]    [Pg.495]    [Pg.411]    [Pg.426]    [Pg.628]    [Pg.210]    [Pg.205]    [Pg.175]    [Pg.54]    [Pg.55]    [Pg.85]    [Pg.43]    [Pg.232]    [Pg.318]    [Pg.226]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Enzyme hydrolytic, mechanism-based inactivation

Hydrolytic

Hydrolytic degradation aging mechanism

Hydrolytic degradation biodegradation mechanisms

Hydrolytic degradation mechanisms

Mechanisms of chemical ageing hydrolytic processes

Structural modification, hydrolytic mechanical properties

Systems Based on a Hydrolytic Mechanism

© 2024 chempedia.info