Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine carboxypeptidase, wheat

The crystal structure of the HNL isolated from S. bicolor (SbHNL) was determined in a complex with the inhibitor benzoic acid." The folding pattern of SbHNL is similar to that of wheat serine carboxypeptidase (CP-WII)" and alcohol dehydrogenase." A unique two-amino acid deletion in SbHNL, however, is forcing the putative active site residues away from the hydrolase binding site toward a small hydrophobic cleft, thereby defining a completely different active site architecture where the triad of a carboxypeptidase is missing. [Pg.151]

T. L. Bullock, K. Breddam, S. J. Remington, Peptide aldehyde complexes with wheat serine carboxypeptidase II, implications for the catalytic mechanism and substrate specificity. /. Mol. Biol. 1996, 255, 714-725. [Pg.340]

Comparison of the deduced sequence of A. saitoi carboxypeptidase with other known serine carboxypeptidase sequences shows that they share a low degree of similarity 32% with wheat carboxypeptidase II, 32.3% with malt carboxypeptidase II and 26.2% with yeast carboxypeptidase Y (Figure 19) [88], However, all of the sequences conserve the catalytic domains (indicated by boxes II to IV in Figure 19) and the domain (box I in the Figure 19) which contains the amino acid residues recognizing the C-terminal carboxylate group of peptide substrates. There are also present in the sequence ten potential sites for N-linked glycosylation. [Pg.216]

The following proteins were chosen for multiple sequence alignment T. califomica acetylcholinesterase, Xanthobacter autotrophicus haloalkane dehalogenase, G. candidum lipase and wheat serine carboxypeptidase. This set was selected because they are all members of the o/fi hydrolase fold family (Ollis et al, 1992). This family of proteins, which is believed to have evolved by... [Pg.658]

It is well established that the same three-dimensional scaffolding in proteins often carries constellations of amino acids with diverse enzymatic functions. A classic example is the large family of a/jS, or TIM, barrel enzymes (Farber and Petsko, 1990 Lesk et ai, 1989). It appears that lipases are no exception to date five other hydrolases with similar overall tertiary folds have been identified. They are AChE from Torpedo calif arnica (Sussman et al., 1991) dienelactone hydrolase, a thiol hydrolase, from Pseudomonas sp. B13 (Pathak and Ollis, 1990 Pathak et al, 1991) haloalkane dehalogenase, with a hitherto unknown catalytic mechanism, from Xanthobacter autotrophicus (Franken et al, 1991) wheat serine carboxypeptidase II (Liao et al, 1992) and a cutinase from Fusa-rium solani (Martinez et al, 1992). Table I gives some selected physical and crystallographic data for these proteins. They all share a similar overall topology, described by Ollis et al (1992) as the a/jS hydrolase... [Pg.33]

First, the structure of wheat serine carboxypeptidase II described by Liao et al. (1992) serves as good evidence of possible relationships. Serine carboxypeptidases are found in virtually every higher organism (Breddam, 1986), and some are of considerable importance, such as the proteinase involved in the regulation of blood pressure in humans (Odya and Erdos, 1981). [Pg.38]

Liao, D.L, Breddam, K., Sweet, R. M., Bullock, T. and Remington, S.). (1992) Refined atomic model of wheat serine Carboxypeptidase-I I at 2.2-Angstrom resolution. Biochemistry 31, 9796-9812... [Pg.189]

Yet another example of the catalytic triad has been found in carboxypeptidase II from wheat. The structure of this enzyme is not significantly similar to either chymotrypsin or subtilisin (Figure 9.15). This protein is a member of an intriguing family of homologous proteins that includes esterases such as acetylcholine esterase and certain lipases. These enzymes all make use of histidine-activated nucleophiles, but the nucleophiles may be cysteine rather than serine. [Pg.361]


See other pages where Serine carboxypeptidase, wheat is mentioned: [Pg.340]    [Pg.340]    [Pg.614]    [Pg.615]    [Pg.656]    [Pg.5]    [Pg.610]    [Pg.614]    [Pg.159]    [Pg.30]   


SEARCH



Carboxypeptidase

Carboxypeptidases

© 2024 chempedia.info