Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface area, separators

Boiler drum dimensions, including the available separation surface area and the steam space water space ratio optimum separation occurs where the maximum steam-water surface area is available... [Pg.279]

Gravity separators need to be designed both to contain a defined oil spill size, as well as for managing routine process wastewater flows. Gravity oil separators for these apphcations should be designed for rise rate loadings to accommodate peak flows, if practical. Experience dictates rise rates in the range of 10 to 20 L/min per square meter of effective separator surface area. [Pg.2403]

Interestingly, Shchukarev equation, which included the separation surface area and equated the concentration on the inner side of the diffusion layer to the solubility value, was published in April 1896. But it was not noticed abroad where the priority was ascribed to A. Noyes and W. Witney who published their equation without considering the area only by the end of 1897. In 1900 their error was corrected, and in 1904 Nernst expanded the upgraded equation on all heterogeneous processes. For this reason this model mass transfer subsequently was treated as Nernst-Noyes equation. [Pg.202]

Tube and plate settlers have been used for many years as sedimentation units. There are a variety of designs, but basically all of them use submerged inclined surfaces with relatively close spacing that increases the separation surface area in a vessel that is smaller than conventional sedimentation units (Fig. 3.6). The water to be treated is passed between the surfaces at velocities which permit suspended sohds to settle and to coalesce on the lower tube or plate surface. The angle of inclination (45° or more) enables the settled sohds to slide downward into a sludge-concentration compartment located at the bottom of the treatment unit. [Pg.72]

Gaines [13] has reported on dimethylsiloxane-containing block copolymers. Interestingly, if the organic block would not in itself spread, the area of the block polymer was simply proportional to the siloxane content, indicating that the organic blocks did not occupy any surface area. If the organic block was separately spreadable, then it contributed, but nonadditively, to the surface area of the block copolymer. [Pg.541]

The separation of two surfaces in contact is resisted by adhesive forces. As the nonnal force is decreased, the contact regions pass from conditions of compressive to tensile stress. As revealed by JKR theory, surface tension alone is sufficient to ensure that there is a finite contact area between the two at zero nonnal force. One contribution to adhesion is the work that must be done to increase surface area during separation. If the surfaces have undergone plastic defonnation, the contact area will be even greater at zero nonnal force than predicted by JKR theory. In reality, continued plastic defonnation can occur during separation and also contributes to adhesive work. [Pg.2744]

The table convincingly demonstrates how the unsuspected presence of micropores can lead to an erroneous value of the specific surface calculated from a Type II isotherm by application of the standard BET procedure. According to the foregoing analysis, the external specific surface of the solid is 114m g" the micropore volume (from the vertical separation of isotherms A and E) is 105 mm g but since the average pore width is not precisely known, the area of the micropore walls cannot be calculated. Thus the BET figure of 360m g calculated from isotherm E represents merely an apparent and not a true surface area. [Pg.214]

Traditional adsorbents such as sihca [7631 -86-9] Si02 activated alumina [1318-23-6] AI2O2 and activated carbon [7440-44-0], C, exhibit large surface areas and micropore volumes. The surface chemical properties of these adsorbents make them potentially useful for separations by molecular class. However, the micropore size distribution is fairly broad for these materials (45). This characteristic makes them unsuitable for use in separations in which steric hindrance can potentially be exploited (see Aluminum compounds, aluminum oxide (ALUMINA) Silicon compounds, synthetic inorganic silicates). [Pg.292]

Foams have a wide variety of appHcations that exploit their different physical properties. The low density, or high volume fraction of gas, enable foams to float on top of other fluids and to fiU large volumes with relatively Httle fluid material. These features are of particular importance in their use for fire fighting. The very high internal surface area of foams makes them useful in many separation processes. The unique rheology of foams also results in a wide variety of uses, as a foam can behave as a soHd, while stiH being able to flow once its yield stress is exceeded. [Pg.431]

Separations. Foams have important uses in separations, both physical and chemical (51,52). These processes take advantage of several different properties of foams. The buoyancy and mechanical rigidity of foam is exploited to physically separate some materials. The large volume of vapor in a foam can be exploited to filter gases. The large surface area of a foam can also be exploited in the separation of chemicals with different surface activities. [Pg.431]

The fluidized-bed system (Fig. 3) uses finely sized coal particles and the bed exhibits Hquid-like characteristics when a gas flows upward through the bed. Gas flowing through the coal produces turbulent lifting and separation of particles and the result is an expanded bed having greater coal surface area to promote the chemical reaction. These systems, however, have only a limited abiUty to handle caking coals (see Fluidization). [Pg.67]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

The great quantity of very fine fibers in a meltblown web creates several unique properties such as large surface areas and small (<1 fiva) pore sizes. These have been used in creating new stmctures for hospital gowns, sterile wrap, incontinence devices, oil spill absorbers, battery separators, and special requirement filters. It is expected that much innovation will continue in the design of composite stmctures containing meltblown webs. [Pg.169]

The anode and cathode chambers are separated by a cation-permeable fluoropolymer-based membrane (see Membrane technology). Platinum-electroplated high surface area electrodes sold under the trade name of TySAR (Olin) (85,86) were used as the anode the cathode was formed from a two-layer HasteUoy (Cabot Corp.) C-22-mesh stmcture having a fine outer 60-mesh stmcture supported on a coarse inner mesh layer welded to a backplate. The cell voltage was 3.3 V at 8 kA/m, resulting ia a 40% current efficiency. The steady-state perchloric acid concentration was about 21% by weight. [Pg.67]

Iron oxide yellows can also be produced by the direct hydrolysis of various ferric solutions with alkahes such as NaOH, Ca(OH)2, and NH. To make this process economical, ferric solutions are prepared by the oxidation of ferrous salts, eg, ferrous chloride and sulfate, that are available as waste from metallurgical operations. The produced precipitate is washed, separated by sedimentation, and dried at about 120°C. Pigments prepared by this method have lower coverage, and because of their high surface area have a high oil absorption. [Pg.12]

Preparation of Pillared Clay Catalysts. PAG products are used for the preparation of zeolite-like catalysts by intercalation, the insertion of Al polycations molecules between the alurninosiHcate sheets of clay (3,33). Aqueous clay suspensions are slowly added to vigorously stirred PAG solutions, and the reaction mixture is aged for several hours. The clay is separated from the PAG solution and washed free of chloride ion. The treated clay is first dried at low temperature and then calcined in air at 450—500°G, producing a high surface area material having a regular-sized pore opening of about 0.6 to... [Pg.180]


See other pages where Surface area, separators is mentioned: [Pg.248]    [Pg.37]    [Pg.182]    [Pg.1660]    [Pg.66]    [Pg.588]    [Pg.400]    [Pg.248]    [Pg.37]    [Pg.182]    [Pg.1660]    [Pg.66]    [Pg.588]    [Pg.400]    [Pg.97]    [Pg.662]    [Pg.24]    [Pg.351]    [Pg.150]    [Pg.264]    [Pg.209]    [Pg.212]    [Pg.212]    [Pg.88]    [Pg.269]    [Pg.499]    [Pg.295]    [Pg.389]    [Pg.430]    [Pg.430]    [Pg.432]    [Pg.264]    [Pg.305]    [Pg.484]    [Pg.149]    [Pg.419]    [Pg.476]    [Pg.76]    [Pg.121]    [Pg.366]    [Pg.146]    [Pg.165]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



© 2024 chempedia.info