Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separators low-temperature

Conversion of the as-deposited film into the crystalline state has been carried out by a variety of methods. The most typical approach is a two-step heat treatment process involving separate low-temperature pyrolysis ( 300 to 350°C) and high-temperature ( 550 to 750°C) crystallization anneals. The times and temperatures utilized depend upon precursor chemistry, film composition, and layer thickness. At the laboratory scale, the pyrolysis step is most often carried out by simply placing the film on a hot plate that has been preset to the desired temperature. Nearly always, pyrolysis conditions are chosen based on the thermal decomposition behavior of powders derived from the same solution chemistry. Thermal gravimetric analysis (TGA) is normally employed for these studies, and while this approach seems less than ideal, it has proved reasonably effective. A few investigators have studied organic pyrolysis in thin films by Fourier transform infrared spectroscopy (FTIR) using reflectance techniques. - This approach allows for an in situ determination of film pyrolysis behavior. [Pg.539]

Three properties of fluids under shear are discussed in detail flow boundary condition, friction, and shear viscosity. It has been shown that the no-slip boundary condition assumed in fluid mechanical formulations of Newtonian flow past solids can fail at the molecular level. The velocity profiles deviate most from the continuum linear form at small pore separations, low temperatures, high pressures, and high shear rates. Friction is controlled by two factors - interfacial strength and in-plane ordering. [Pg.654]

The dielectric loss behavior of PVAc was similar to that of the other polymers. An Increase in dielectric Intensity of the polymer s S mechanism was directly proportional to the amount of unclustered water. In addition when clustered water was present two separate low temperature peaks occurred as shown In the frequency dependent data of Figure 8. The higher frequency peaks were the result of clustered water. This is confirmed by the similarity between poly(vinyl acetate) and the clustered water peaks of other polymers as plotted in Figure 7. [Pg.461]

If high wellhead pressures are available over long periods, cooling can be achieved by expanding gas through a valve, a process known as Joule Thomson (JT) throttling. The valve is normally used in combination with a liquid gas separator and a heat exchanger, and inhibition measures must be taken to avoid hydrate formation. The whole process is often termed low temperature separation (LTS). [Pg.251]

The previous seetion showed how the van der Waals equation was extended to binary mixtures. However, imieh of the early theoretieal treatment of binary mixtures ignored equation-of-state eflfeets (i.e. the eontributions of the expansion beyond the volume of a elose-paeked liquid) and implieitly avoided the distinetion between eonstant pressure and eonstant volume by putting the moleeules, assumed to be equal in size, into a kind of pseudo-lattiee. Figure A2.5.14 shows sohematieally an equimolar mixture of A and B, at a high temperature where the distribution is essentially random, and at a low temperature where the mixture has separated mto two virtually one-eomponent phases. [Pg.626]

Figure A2.5.14. Quasi-lattice representation of an equimolar binary mixture of A and B (a) randomly mixed at high temperature, and (b) phase separated at low temperature. Figure A2.5.14. Quasi-lattice representation of an equimolar binary mixture of A and B (a) randomly mixed at high temperature, and (b) phase separated at low temperature.
Do we expect this model to be accurate for a dynamics dictated by Tsallis statistics A jump diffusion process that randomly samples the equilibrium canonical Tsallis distribution has been shown to lead to anomalous diffusion and Levy flights in the 5/3 < q < 3 regime. [3] Due to the delocalized nature of the equilibrium distributions, we might find that the microstates of our master equation are not well defined. Even at low temperatures, it may be difficult to identify distinct microstates of the system. The same delocalization can lead to large transition probabilities for states that are not adjacent ill configuration space. This would be a violation of the assumptions of the transition state theory - that once the system crosses the transition state from the reactant microstate it will be deactivated and equilibrated in the product state. Concerted transitions between spatially far-separated states may be common. This would lead to a highly connected master equation where each state is connected to a significant fraction of all other microstates of the system. [9, 10]... [Pg.211]

The 1,6-difunctional hydroxyketone given below contains an octyl chain at the keto group and two chiral centers at C-2 and C-3 (G. Magnusson, 1977). In the first step of the antithesis of this molecule it is best to disconnect the octyl chain and to transform the chiral residue into a cyclic synthon simultaneously. Since we know that ketones can be produced from add derivatives by alkylation (see p. 45ff,), an obvious precursor would be a seven-membered lactone ring, which is opened in synthesis by octyl anion at low temperature. The lactone in turn can be transformed into cis-2,3-dimethyicyclohexanone, which is available by FGI from (2,3-cis)-2,3-dimethylcyclohexanol. The latter can be separated from the commercial ds-trans mixture, e.g. by distillation or chromatography. [Pg.206]

Common alloying elements include nickel to improve low temperature mechanical properties chromium, molybdenum, and vanadium to improve elevated-temperature properties and silicon to improve properties at ordinary temperatures. Low alloy steels ate not used where corrosion is a prime factor and are usually considered separately from stainless steels. [Pg.347]

Ciyst lliz tion. Low temperature fractional crystallization was the first and for many years the only commercial technique for separating PX from mixed xylenes. As shown in Table 2, PX has a much higher freezing point than the other xylene isomers. Thus, upon cooling, a pure soHd phase of PX crystallizes first. Eventually, upon further cooling, a temperature is reached where soHd crystals of another isomer also form. This is called the eutectic point. PX crystals usually form at about —4° C and the PX-MX eutectic is reached at about —68° C. In commercial practice, PX crystallization is carried out at a temperature just above the eutectic point. At all temperatures above the eutectic point, PX is stiU soluble in the remaining Cg aromatics Hquid solution,... [Pg.417]

The physical properties of polyurethane adhesives result from a special form of phase separation which occurs in the cross-linked polyurethane stmcture. The urethane portions of polyurethanes tend to separate from the polyol portion of the resin, providing good shear strength, good low temperature flexibiUty, and high peel strength. Catalysts such as dibutyltin dilaurate [77-58-7], stannous octoate [1912-83-0], l,4-diazabicyclo[2.2.2]octane... [Pg.233]

The question of whether adsorption should be done ia the gas or Hquid phase is an interesting one. Often the choice is clear. Eor example, ia the separation of nitrogen from oxygen, Hquid-phase separation is not practical because of low temperature requirements. In C q—olefin separation, a gas-phase operation is not feasible because of reactivity of feed components at high temperatures. Also, ia the case of substituted aromatics separation, such as xylene from other Cg aromatics, the inherent selectivities of iadividual components are so close to one another that a simulated moving-bed operation ia hquid phase is the only practical choice. [Pg.303]

Formex pro-cess, Snam-progetti /V-formyl-morph o-line (FM) water is added to the FM to increase its se-lectivity and also to avoid high reboiler temperatures during solvent recovery by distillation 40 perforated-tray ex-tractor, FM density at 1.15 aids phase separation low corrosion allows use of carbon steel equipment... [Pg.78]

Phase Separation. Microporous polymer systems consisting of essentially spherical, intercoimected voids, with a narrow range of pore and ceU-size distribution have been produced from a variety of thermoplastic resins by the phase-separation technique (127). If a polyolefin or polystyrene is insoluble in a solvent at low temperature but soluble at high temperatures, the solvent can be used to prepare a microporous polymer. When the solutions, containing 10—70% polymer, are cooled to ambient temperatures, the polymer separates as a second phase. The remaining nonsolvent can then be extracted from the solid material with common organic solvents. These microporous polymers may be useful in microfiltrations or as controlled-release carriers for a variety of chemicals. [Pg.408]


See other pages where Separators low-temperature is mentioned: [Pg.311]    [Pg.550]    [Pg.12]    [Pg.91]    [Pg.92]    [Pg.141]    [Pg.202]    [Pg.436]    [Pg.311]    [Pg.550]    [Pg.12]    [Pg.91]    [Pg.92]    [Pg.141]    [Pg.202]    [Pg.436]    [Pg.132]    [Pg.144]    [Pg.251]    [Pg.256]    [Pg.616]    [Pg.620]    [Pg.631]    [Pg.806]    [Pg.1976]    [Pg.2487]    [Pg.2892]    [Pg.2901]    [Pg.145]    [Pg.907]    [Pg.64]    [Pg.224]    [Pg.322]    [Pg.129]    [Pg.150]    [Pg.311]    [Pg.25]    [Pg.481]    [Pg.10]    [Pg.11]    [Pg.85]    [Pg.153]    [Pg.262]    [Pg.390]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Isotope separation by low-temperature countercurrent distillation

Separation low temperature

Separation low temperature

Separator temperature

Temperature separation

© 2024 chempedia.info