Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation Spherical packing

The other group, those with R values in the range 0.5— 1.0, also associate at temperatures in excess of the Krafft point, but the molecules are now not spherically packed but rather close to parallel. As a consequence, there is no limit to the size of the association structure, as in the spherical micelles, and a phase separation occurs to form a lamellar liquid crystal. The principle features of the phase diagram in Fig. 6 remain flie Krafft point marks the intersection of... [Pg.51]

How much can we bend this bond Well, the electrons of each ion occupy complicated three-dimensional regions (or orbitals ) around the nuclei. But at an approximate level we can assume the ions to be spherical, and there is then considerable freedom in the way we pack the ions round each other. The ionic bond therefore lacks directionality, although in packing ions of opposite sign, it is obviously necessary to make sure that the total charge (+ and -) adds up to zero, and that positive ions (which repel each other) are always separated by negative ions. [Pg.38]

Size exclusion chromatography (SEC, also known as GPC and GFC) has become a very well accepted separation method since its introduction in the late-1950s by works of Porath and Flodin (1) and Moore (2). Polymers Standards Service (PSS) packings for SEC/SEC columns share this long-standing tradition as universal and stable sorbents for all types of polymer applications. In general, PSS SEC columns are filled with spherical, macroporous cross-linked, pressure-stable, and pH-resistant polymeric gels. [Pg.267]

High-pressure liquid chromatography (HPLC) is a variant of the simple column technique, based on the discovery that chromatographic separations are vastly improved if the stationary phase is made up of very small, uniformly sized spherical particles. Small particle size ensures a large surface area for better adsorption, and a uniform spherical shape allows a tight, uniform packing of particles. In practice, coated Si02 microspheres of 3.5 to 5 fxm diameter are often used. [Pg.432]

Schiesser and Lapidus (S3), in later studies, measured the liquid residencetime distribution for a column of 4-in. diameter and 4-ft height packed with spherical particles of varying porosity and nominal diameters of in. and in. The liquid medium was water, and as tracers sodium chloride or methyl orange were employed. The specific purposes of this study were to determine radial variations in liquid flow rate and to demonstrate how pore diffusivity and pore structure may be estimated and characterized on the basis of tracer experiments. Significant radial variations in flow rate were observed methods are discussed for separating the hydrodynamic and diffusional contributions to the residence-time curves. [Pg.97]

The more useful types of chirally active bonded phases are those based on the cyclodextrins. There are a number of different types available, some of which have both dispersive or polar groups bonded close to the chirally active sites to permit mixed interactions to occur. This emphasizes the basic entropic differences between the two isomers being separated. A range of such products is available from ASTEC Inc. and a separation of the d and / isomers of scopolamine and phenylephrine are shown in figure 4. The separations were carried out on a cyclodextrin bonded phase (CYCLOBOND 1 Ac) that had been acetylated to provide semi-polar interacting groups in close proximity to the chiral centers of the cyclodextrin. The column was 25 cm long, 4.6 mm in diameter and packed with silica based spherical bonded phase particles 5pm in diameter. Most of the columns supplied by ASTEC Inc. have these dimensions and, consequently, provide a... [Pg.291]

Thus, the minimum value of (a) for any pair of solutes can be calculated for any given column. The minimum values of (a) required for a pair of solutes that will be separated on a column having 25,000 theoretical plates (the efficiency of the standard ASTEC column 25 cm long, 4.6 mm in diameter and packed with spherical particles 5 p in diameter) is shown plotted against the (k ) of the first eluted solute is shown in figure 5. [Pg.293]

Figure 1.17 Separation of large ring polycyclic aroaatic hydrocarbons extracted from carbon black on a 1.8 x 0.2 n I.D. fused silica capillary column packed with 3 micrometer spherical octadecylsllanized silica gel eluted with a stepwise solvent gradient at a flow rate of 1.1 mlcroliters/min with an inlet pressure of about 360 atmospheres. Under isocratic conditions this column yielded ca. 225,000 theoretical plates. (Reproduced with permission from ref. 238. Copyright Friedr. Vieweg t Sohn). Figure 1.17 Separation of large ring polycyclic aroaatic hydrocarbons extracted from carbon black on a 1.8 x 0.2 n I.D. fused silica capillary column packed with 3 micrometer spherical octadecylsllanized silica gel eluted with a stepwise solvent gradient at a flow rate of 1.1 mlcroliters/min with an inlet pressure of about 360 atmospheres. Under isocratic conditions this column yielded ca. 225,000 theoretical plates. (Reproduced with permission from ref. 238. Copyright Friedr. Vieweg t Sohn).
He et al. (2002) used an off-line HPLC/CE method to map cancer cell extracts. Frozen ovarian cancer cells (containing 107 cells) were reconstituted in 300 pL of deionized water and placed in an ultrasonic bath to lyse the cells. Then the suspension was centrifuged and the solubilized proteins were collected for HPLC fractionation. The HPLC separation was carried out on an instrument equipped with a RP C-4 column, 250 mm x 4.6 mm, packed with 5-pm spherical silica particles. Extracted proteins were dissolved in 300 pL of DI water, and lOOpL was injected onto the column at a flow rate of 1 mL/min. Buffer A was 0.1% TEA in water and buffer B was 0.1% TFA in acetonitrile. A two-step gradient, 15-30% B in 15 min followed by 30-70% B in 105 min, was used. The column effluent was sampled every minute into a 96-well microtiter plate with the aid of an automatic fraction collector. After collection, the fractions were dried at room temperature under vacuum. The sample in each well was reconstituted before the CE analysis with 10 pL deionized water. The... [Pg.378]

The lowest theoretical interparticular volume of perfectly packed uniformly sized spherical beads is calculated to be about 26% of the total available volume. In practice, even the best packed columns still contain about 30-40% void volume in addition to the internal porosity of the beads. The problem of interparticular volume does not exist in systems in which a membrane is used as the separation medium. Both theoretical calculations and experimental results clearly document that membrane systems can be operated in a dead-end filtration... [Pg.89]


See other pages where Separation Spherical packing is mentioned: [Pg.165]    [Pg.184]    [Pg.55]    [Pg.113]    [Pg.184]    [Pg.951]    [Pg.156]    [Pg.2]    [Pg.74]    [Pg.257]    [Pg.1292]    [Pg.100]    [Pg.143]    [Pg.181]    [Pg.2210]    [Pg.185]    [Pg.426]    [Pg.93]    [Pg.106]    [Pg.163]    [Pg.489]    [Pg.484]    [Pg.609]    [Pg.9]    [Pg.39]    [Pg.543]    [Pg.78]    [Pg.105]    [Pg.176]    [Pg.6]    [Pg.186]    [Pg.232]    [Pg.237]    [Pg.259]    [Pg.18]    [Pg.124]    [Pg.348]    [Pg.518]    [Pg.25]    [Pg.26]    [Pg.25]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Separator spherical

© 2024 chempedia.info