Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductors, electrical conductivities

The diversity of EEP reactions on a solid surface can be illustrated by the survey if interaction between excited atoms of mercury and zinc oxide [186]. When atoms of Hg get to an oxidized surface of ZnO at room temperature, an increase in the semiconductor electrical conductivity take place (Fig. 5.3, curve 2). The electrical conductivity change signal is irreversible, and in case of an increase in the temperature, after the Hg flux is disabled, an additional increase in the electrical conductivity (curves 3 and 4) takes place. One can logically suppose that we are dealing here with partial reduction of zinc oxide according to the scheme... [Pg.285]

With the above description of the band structure and optical properties of semiconductors, it is now possible to describe the remaining key characteristic of semiconductors electrical conductivity. The electrical conductivity of semiconductors forms the basis for most of the modem electronics industry. Without precise control over the electrical conductivity of semiconductors, many modem electronic devices would not perform satisfactorily. The goal of this section is to understand the chemical basis for the electrical properties of semiconducting solids. [Pg.4366]

In a defect-free, undoped, semiconductor, tliere are no energy states witliin tire gap. At 7"= 0 K, all of tire VB states are occupied by electrons and all of the CB states are empty, resulting in zero conductivity. The tliennal excitation of electrons across tire gap becomes possible at T > 0 and a net electron concentration in tire CB is established. The electrons excited into tire CB leave empty states in tire VB. These holes behave like positively charged electrons. Botli tire electrons in the CB and holes in tire VB participate in tire electrical conductivity. [Pg.2881]

In tenns of the carrier mobility, the electrical conductivity c of an n type semiconductor can be written as... [Pg.2882]

Physical Properties Electrical. Electrical properties have been the main focus of study of organic semiconductors, and conductivity studies on organic materials have led to the development of materials with extremely low resistivities and large anisotropies. A discussion of conductivity behaviors for various classes of compounds follows. [Pg.238]

The polysdanes are normally electrical insulators, but on doping with AsF or SbF they exhibit electrical conductivity up to the levels of good semiconductors (qv) (98,124). Conductivities up to 0.5 (H-cm) have been measured. However, the doped polymers are sensitive to air and moisture thereby making them unattractive for practical use. In addition to semiconducting behavior, polysilanes exhibit photoconductivity and appear suitable for electrophotography (qv) (125—127). Polysdanes have also been found to exhibit nonlinear optical properties (94,128). [Pg.263]

Because there are two changes ia material composition near the active region, this represents a double heterojunction. Also shown ia Figure 12 is a stripe geometry that confines the current ia the direction parallel to the length of the junction. This further reduces the power threshold and makes the diffraction-limited spreading of the beam more symmetric. The stripe is often defined by implantation of protons, which reduces the electrical conductivity ia the implanted regions. Many different stmctures for semiconductor diode lasers have been developed. [Pg.10]

Heterogeneous Photocatalysis. Heterogeneous photocatalysis is a technology based on the irradiation of a semiconductor (SC) photocatalyst, for example, titanium dioxide [13463-67-7] Ti02, zinc oxide [1314-13-2] ZnO, or cadmium sulfide [1306-23-6] CdS. Semiconductor materials have electrical conductivity properties between those of metals and insulators, and have narrow energy gaps (band gap) between the filled valence band and the conduction band (see Electronic materials Semiconductors). [Pg.400]

Sihcon (33) is a semiconductor and thus the electrical conductivity. O, is deterrnined by contributions from both electrons and holes, ie,... [Pg.530]

For insulators, Z is very small because p is very high, ie, there is Htde electrical conduction for metals, Z is very small because S is very low. Z peaks for semiconductors at - 10 cm charge carrier concentration, which is about three orders of magnitude less than for free electrons in metals. Thus for electrical power production or heat pump operation the optimum materials are heavily doped semiconductors. [Pg.507]

Both anatase and mtile are broad band gap semiconductors iu which a fiUed valence band, derived from the O 2p orbitals, is separated from an empty conduction band, derived from the Ti >d orbitals, by a band gap of ca 3 eV. Consequendy the electrical conductivity depends critically on the presence of impurities and defects such as oxygen vacancies (7). For very pure thin films, prepared by vacuum evaporation of titanium metal and then oxidation, conductivities of 10 S/cm have been reported. For both siugle-crystal and ceramic samples, the electrical conductivity depends on both the state of reduction of the and on dopant levels. At 300 K, a maximum conductivity of 1 S/cm has been reported at an oxygen deficiency of... [Pg.121]

Antimony is also used as a dopant in n-ty e semiconductors. It is a common additive in dopants for siHcon crystals with impurities, to alter the electrical conductivity. Interesting semiconductor properties have been reported for cadmium antimonide [12050-27-0] CdSb, and zinc antimonide [12039-35-9] ZnSb. The latter has good thermoelectric properties. Antimony with a purity as low as 99.9+% is an important alloying ingredient in the bismuth teUuride [1304-82-17, Bi Te, class of alloys which are used for thermoelectric cooling. [Pg.198]

Boron is an extremely hard refractory soHd having a hardness of 9.3 on Mohs scale and a very low (1.5 x 10 ohm cm ) room temperature electrical conductivity so that boron is classified as a metalloid or semiconductor. These values are for the a-rhombohedral form. [Pg.183]

For a large number of applications involving ceramic materials, electrical conduction behavior is dorninant. In certain oxides, borides (see Boron compounds), nitrides (qv), and carbides (qv), metallic or fast ionic conduction may occur, making these materials useful in thick-film pastes, in fuel cell apphcations (see Fuel cells), or as electrodes for use over a wide temperature range. Superconductivity is also found in special ceramic oxides, and these materials are undergoing intensive research. Other classes of ceramic materials may behave as semiconductors (qv). These materials are used in many specialized apphcations including resistance heating elements and in devices such as rectifiers, photocells, varistors, and thermistors. [Pg.349]

Materials are usually classified according to the specific conductivity mode, eg, as insulators, which have low conductivity and low mobihty of carriers. Metahic conductors, which include some oxides, have a high conductivity value which is not a strong (exponential) function of temperature. Semiconductors are intermediate and have an exponential temperature dependence. Figure 1 gives examples of electrical conductivities at room temperature for these various materials. [Pg.349]

In this chapter nonlinear piezoelectric and dielectric behavior shock-induced electrical conductance semiconductors elastic physical properties. [Pg.71]

Arsenic and selenium, which fall directly below phosphorus and sulfur in the periodic table, are of interest for a variety of reasons. Arsenic is a true metalloid. A metallic form, called gray arsenic, has an electrical conductivity approaching that of lead. Another allotrope, yellow arsenic, is distinctly nonmetallic it has the molecular formula As4, analogous to white phosphorus, P4. Selenium is properly classified as a nonmetal, although one of its allotropes has a somewhat metallic appearance and is a semiconductor. Another form of selenium has the molecular formula Se8. analogous to sulfur. [Pg.573]


See other pages where Semiconductors, electrical conductivities is mentioned: [Pg.334]    [Pg.1134]    [Pg.728]    [Pg.334]    [Pg.1134]    [Pg.728]    [Pg.108]    [Pg.379]    [Pg.236]    [Pg.272]    [Pg.153]    [Pg.126]    [Pg.126]    [Pg.132]    [Pg.57]    [Pg.517]    [Pg.291]    [Pg.107]    [Pg.219]    [Pg.358]    [Pg.359]    [Pg.359]    [Pg.231]    [Pg.40]    [Pg.163]    [Pg.236]    [Pg.77]    [Pg.154]    [Pg.159]    [Pg.987]    [Pg.174]   
See also in sourсe #XX -- [ Pg.149 ]

See also in sourсe #XX -- [ Pg.149 ]




SEARCH



Conductivity semiconductors

Semiconductors, electrical

Semiconductors, electrical conduction

© 2024 chempedia.info