Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductor interface, double-layer

The progress in the discovery and use of new polymer electrodes is briefly discussed. Some of the possible applications of these new electrodes are suggested. As important background information for studying organic polymer electrochemistry, knowledge of the conduction mechanism is needed. The theory of bipolaron formation, as proposed by Bredas, et al., is presented. It is important to study the electrode-solution interface. Double layer models for metal, semiconductor, and insulator electrodes are probed. Recent work and applications of these electrodes are then briefly reviewed. This includes initiatives in the fields of electrode generated reactions, photoelectrochemistry, batteries, and molecular electronics. Finally, the needed areas of research, from an electrochemical point of view, are presented. [Pg.1]

Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent... Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent...
Electrical double layers are also characteristic of the semiconductor-electrolyte solution, solid electrolyte or insulator-electrolyte solution interface and for the interface between two immiscible electrolyte solutions (ITIES) (Section 4.5). [Pg.213]

The basic difference between metal-electrolyte and semiconductor-electrolyte interfaces lies primarily in the fact that the concentration of charge carriers is very low in semiconductors (see Section 2.4.1). For this reason and also because the permittivity of a semiconductor is limited, the semiconductor part of the electrical double layer at the semiconductor-electrolyte interface has a marked diffuse character with Debye lengths of the order of 10 4-10 6cm. This layer is termed the space charge region in solid-state physics. [Pg.247]

The situation of the electric double layer at a semiconductor/electrolyte solution interface affected by light radiation will be dealt with in Section 5.10. [Pg.251]

For semiconductor electrodes and also for the interface between two immiscible electrolyte solutions (ITIES), the greatest part of the potential difference between the two phases is represented by the potentials of the diffuse electric layers in the two phases (see Eq. 4.5.18). The rate of the charge transfer across the compact part of the double layer then depends very little on the overall potential difference. The potential dependence of the charge transfer rate is connected with the change in concentration of the transferred species at the boundary resulting from the potentials in the diffuse layers (Eq. 4.3.5), which, of course, depend on the overall potential difference between the two phases. In the case of simple ion transfer across ITIES, the process is very rapid being, in fact, a sort of diffusion accompanied with a resolvation in the recipient phase. [Pg.289]

Although a family of OgS - Jig8 values are allowed under Equation 7 the actual equilibrium state of the oxide/solution interface will be determined by the dissociation of the surface groups and the properties of the electrolyte or the diffuse double layer near the surface. For surfaces that develop surface charges by different mechanisms such as for semiconductor, there will be an equation of state or charge-potential relationship that is analogous to Equation 7 which characterizes the electrical response of the surface. [Pg.102]

B , while for an n-type semiconductor the reverse is true. An analog to the SCR in the semiconductor is an extended layer of ions in the bulk of the electrolyte, which is present especially in the case of electrolytes of low concentration (typically below 0.1 rnolh1). This diffuse double layer is described by the Gouy-Chap-man model. The Stern model, a combination of the Helmholtz and the Gouy-Chapman models, was developed in order to find a realistic description of the electrolytic interface layer. [Pg.40]

Since the metal can be treated as a nearly perfect conductor, C is high compared with C, and cannot influence the value of the measured doublelayer capacitance. The role of the metal in the double layer structure was discussed by Rice, who suggested that the distribution of electrons inside the metal decides the properties of the double-layer. This concept was later used to describe double-layer properties at the semiconductor/electrolyte interface. As shown later, the electron density on the metal side of the interface can be changed under the influence of charged solution species (dipoles, ions). ... [Pg.6]

As shown in Fig. 9-9, the interfacial double layer of semiconductor electrode consists of a space charge layer with the potential of in the semiconductor and a compact layer with the potential of at the electrode interface. The potential 4+sc across the space charge layer controls the process of ionization of smface atoms (Eqn. 9-24) whereas, the potential across the compact layer controls the process of transfer of surface ions (Eqn. 9-33). The overvoltage iiac across the space charge layer and the overvoltage t b across the compact layer are eiq)ressed, respectively, in Eqn. 9-34 ... [Pg.302]

In the active state, the dissolution of metals proceeds through the anodic transfer of metal ions across the compact electric double layer at the interface between the bare metal and the aqueous solution. In the passive state, the formation of a thin passive oxide film causes the interfadal structure to change from a simple metal/solution interface to a three-phase structure composed of the metal/fUm interface, a thin film layer, and the film/solution interface [Sato, 1976, 1990]. The rate of metal dissolution in the passive state, then, is controlled by the transfer rate of metal ions across the film/solution interface (the dissolution rate of a passive semiconductor oxide film) this rate is a function of the potential across the film/solution interface. Since the potential across the film/solution interface is constant in the stationary state of the passive oxide film (in the state of band edge level pinning), the rate of the film dissolution is independent of the electrode potential in the range of potential of the passive state. In the transpassive state, however, the potential across the film/solution interface becomes dependent on the electrode potential (in the state of Fermi level pinning), and the dissolution of the thin transpassive film depends on the electrode potential as described in Sec. 11.4.2. [Pg.382]

Electrochemistry at Electrodes is concerned with the structure of electrical double layers and the characteristic of charge transfer reactions across the electrode/electrolyte interface. The purpose of this text is to integrate modem electrochemistry with semiconductor physics this approach provides a quantitative basis for understanding electrochemistiy at metal and semiconductor electrodes. [Pg.406]

Fig. 6.3 Schematic picture of the electrochemical potential ( > as a function of distance x in an oxide semiconductor electrolyte system a) bulk semiconductor potential b) solid/solution interface potential c) space charge potential d) flat band potential e) potential in the double layer (White, 1990, with permission. Fig. 6.3 Schematic picture of the electrochemical potential ( > as a function of distance x in an oxide semiconductor electrolyte system a) bulk semiconductor potential b) solid/solution interface potential c) space charge potential d) flat band potential e) potential in the double layer (White, 1990, with permission.
At a semiconductor-electrolyte interface, if there is no specific interaction between the charge species and the surface an electrical double layer will form with a diffuse space-charge region on the semiconductor side and a plate-like counter ionic charge on the electrolyte side resulting in a potential difference (j) across the interface. The total potential difference across the interface can be given by... [Pg.135]

Fig. 108a-c. Proposed equivalent circuits for. a an empty and b a semiconductor-particle-coated BLM. Porous structure of the semiconductor particles allowed c the simplification of the equivalent circuit. Rm, RH, and Rsol are resistances due to the membrane, to the Helmholtz electrical double layer, and to the electrolyte solutions, while C and CH are the corresponding capacitances Rf and Cf are the resistance and capacitance due to the particulate semiconductor film R m and Cm are the resistance and capacitance of the parts of the BLM which remained unaltered by the incorporation of the semiconductor particles R and Csc are the space charge resistance and capacitance at the semiconductor particle-BLM interface and Rss and C are the resistance and capacitance due to surface-state on the semiconductor particles in the BLM [652]... [Pg.146]

An electrical double layer is usually formed at a semiconductor-electrolyte interface, as well as at the boundary between two solids. This layer consists of plates carrying opposite charges, each being located in one of the phases in contact. In the semiconductor the charge in the region near the surface is formed due to redistribution of electrons and holes in the electrolyte solution, due to redistribution of ions, which form the ionic plate of the double layer. [Pg.263]

Fig. 3. The structure of electrical double layer at a semiconductor-electrolyte interface (a) and the distribution of the potential (b) and charge (c) at the interface. The electrode is charged negatively. is the space-charge region thickness, La is the Helmholtz layer thickness, Qlc and Qtl are the charge of the semiconductor and ionic plates of the double layer, respectively (for further notations see the text). Fig. 3. The structure of electrical double layer at a semiconductor-electrolyte interface (a) and the distribution of the potential (b) and charge (c) at the interface. The electrode is charged negatively. is the space-charge region thickness, La is the Helmholtz layer thickness, Qlc and Qtl are the charge of the semiconductor and ionic plates of the double layer, respectively (for further notations see the text).
Solid state materials that can conduct electricity, are electrochemically of interest with a view to (a) the conduction mechanism, (b) the properties of the electrical double layer inside a solid electrolyte or semiconductor, adjacent to an interface with a metallic conductor or a liquid electrolyte, (c) charge-transfer processes at such interfaces, (d) their possible application in systems of practical interest, e.g. batteries, fuel cells, electrolysis cells, and (e) improvement of their operation in these applications by modifications of the electrode surface, etc. [Pg.277]

While many of the standard electroanalytical techniques utilized with metal electrodes can be employed to characterize the semiconductor-electrolyte interface, one must be careful not to interpret the semiconductor response in terms of the standard diagnostics employed with metal electrodes. Fundamental to our understanding of the metal-electrolyte interface is the assumption that all potential applied to the back side of a metal electrode will appear at the metal electrode surface. That is, in the case of a metal electrode, a potential drop only appears on the solution side of the interface (i.e., via the electrode double layer and the bulk electrolyte resistance). This is not the case when a semiconductor is employed. If the semiconductor responds in an ideal manner, the potential applied to the back side of the electrode will be dropped across the internal electrode-electrolyte interface. This has two implications (1) the potential applied to a semiconducting electrode does not control the electrochemistry, and (2) in most cases there exists a built-in barrier to charge transfer at the semiconductor-electrolyte interface, so that, electrochemical reversible behavior can never exist. In order to understand the radically different response of a semiconductor to an applied external potential, one must explore the solid-state band structure of the semiconductor. This topic is treated at an introductory level in References 1 and 2. A more complete discussion can be found in References 3, 4, 5, and 6, along with a detailed review of the photoelectrochemical response of a wide variety of inorganic semiconducting materials. [Pg.856]


See other pages where Semiconductor interface, double-layer is mentioned: [Pg.178]    [Pg.1949]    [Pg.545]    [Pg.233]    [Pg.250]    [Pg.321]    [Pg.216]    [Pg.229]    [Pg.368]    [Pg.181]    [Pg.407]    [Pg.74]    [Pg.115]    [Pg.145]    [Pg.132]    [Pg.117]    [Pg.72]    [Pg.47]    [Pg.268]    [Pg.283]    [Pg.366]    [Pg.264]    [Pg.66]    [Pg.84]    [Pg.215]    [Pg.100]    [Pg.343]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Double layer semiconductor

Interface double layer

Interface layer

Semiconductor interfaces

Semiconductor layered

© 2024 chempedia.info