Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self-assembly of lipid bilayer

Israelachvilli JN, Mitchell DJ, Ninham BW. Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta Biomembr 1977 470 185-201. [Pg.300]

Fontell K, Khan A, Lindstrom B, Maciejewska D, Puangngern S (1991) Phase-Equilibria and Structures in Ternary-Systems of a Cationic Surfactant (C16tabr or (C16ta)2so4), Alcohol, and Water. Colloid Polym Sci 269 727-742 Israelachvili JN, Mitchell DJ, Ninham BW (1977) Theory of Self-Assembly of Lipid Bilayers and Vesicles. Biochim Biophys Acta 470 185-201... [Pg.223]

The hydrophobic effect is a driving force in the formation of clathrate hydrates and the self-assembly of lipid bilayers. Hydrophobic interactions between lipids and proteins are the most important determinants of biological membrane structure. The three-dimensional folding pattern of proteins is also determined by hydrophobic interactions between nonpolar side chains of amino acid residues. [Pg.36]

Lipofullerenes such as 35-37 self-assemble within lipid bilayers into rod-like structures of nanoscopic dimensions [61, 62]. These anisotropic superstructures may be important for future membrane technology. Significantly, lipofullerenes 35 and 37 have very low melting points, 22 and 67 °C (DSC, heating scan), respectively, with 35 being the first liquid fuUerene derivative at room temperature. [Pg.311]

Figure 11.1 The amphiphilic self-assembly of lipids into bilayers. Figure 11.1 The amphiphilic self-assembly of lipids into bilayers.
Liposomes and micelles are lipid vesicles composed of self-assembled amphiphilic molecules. Amphiphiles with nonpolar tails (i.e., hydrophobic chains) self-assemble into lipid bilayers, and when appropriate conditions are present, a spherical bilayer is formed. The nonpolar interior of the bilayer is shielded by the surface polar heads and an aqueous environment is contained in the interior of the sphere (Figure 10.3A). Micelles are small vesicles composed of a shell of lipid the interior of the micelle is the hydrophobic tails of the lipid molecules (Figure 10.3B). Liposomes have been the primary form of lipid-based delivery system because they contain an aqueous interior phase that can be loaded with biomacromolecules. The ability to prepare liposomes and micelles from compounds analogous to pulmonary surfactant is frequently quoted as a major advantage of liposomes over other colloidal carrier systems. [Pg.263]

Although much of the interest in biological nanostructures has focused on relatively complex functionality, cells and organisms themselves can be considered as a collection of self-assembled materials lipid bilayers, the extracellular matrix, tendon and connective tissue, skin, spider silk, cotton fiber, wood, and bone are all self-assembled biological materials, with an internal structure hierarchically ordered from the molecular to the macroscopic scale. [Pg.220]

In reconstitution experiments, the self-assembly of the pore-forming protein a-hemolysin of Staphylococcus aureus (aHL) [181-183] was examined in plain and S-layer-supported lipid bilayers. Staphylococcal aHL formed lytic pores when added to the lipid-exposed side of the DPhPC bilayer with or without an attached S-layer from B coagulans E38/vl. The assembly of aHL pores was slower at S-layer-supported compared to unsupported folded membranes. No assembly could be detected upon adding aHL monomers to the S-layer face of the composite membrane. Therefore, the intrinsic molecular sieving properties of the S-layer lattice did not allow passage of aHL monomers through the S-layer pores to the lipid bilayer [142]. [Pg.377]

Of course there are many phenomena that equilibrate on the nanosecond timescale. However, the majority of relevant events take much more time. For example, the ns timescale is much too short to allow for the self-assembly of a set of lipids from a homogeneously distributed state to a lamellar topology. This is the reason why it is necessary to start a simulation as close as possible to the expected equilibrated state. Of course, this is a tricky practice and should be considered as one of the inherent problems of MD. Only recently, this issue was addressed by Marrink [56]. Here the homogeneous state of the lipids was used as the start configuration, and at the end of the simulation an intact bilayer was found. Permeation, transport across a bilayer, and partitioning of molecules from the water to the membrane phase typically take also more time than can be dealt with by MD. We will return to this point below. [Pg.39]

In THE PAST DECADE, IMPROVEMENTS IN infrared spectroscopic instrumentation have contributed to significant advances in the traditional analytical applications of the technique. Progress in the application of Fourier transform infrared spectroscopy to physiochemical studies of colloidal assemblies and interfaces has been more uneven, however. While much Fourier transform infrared spectroscopic work has been generated about the structure of lipid bilayers and vesicles, considerably less is available on the subjects of micelles, liquid crystals, or other structures adopted by synthetic surfactants in water. In the area of interfacial chemistry, much of the infrared spectroscopic work, both on the adsorption of polymers or proteins and on the adsorption of surfactants forming so called "self-assembled" mono- and multilayers, has transpired only in the last five years or so. [Pg.1]

Figure 1. (A) Schematic illustration of a phospholipid molecule with hydrophilic head and hydrophobic tail. Cross-sectional view of (B) the micelle structure and (C) the bilayer sheet structure built through the self-assembly of the lipid molecules (A). Figure 1. (A) Schematic illustration of a phospholipid molecule with hydrophilic head and hydrophobic tail. Cross-sectional view of (B) the micelle structure and (C) the bilayer sheet structure built through the self-assembly of the lipid molecules (A).
The emission of Trp 19 in melittin shifts to the red side peaking at 341 nm (Fig. 18), and the probe location slightly moves away from the lipid interface toward the channel center. Consistently, we observed a larger fraction of the ultrafast solvation component (35%) and a smaller contribution of slow ordered-water motion (38%). Melittin consists of 26 amino acid residues (Fig. 9), and the first 20 residues are predominantly hydrophobic, whereas the other 6 near the carboxyl terminus are hydrophilic under physiological conditions. This amphipathic property makes melittin easily bound to membranes, and extensive studies from both experiments [156-161] and MD simulations [162-166] have shown the formation of an 7-helix at the lipid interface. Self-assembly of 7-helical melittin monomers is believed to be important in its lytic activity of membranes [167-169]. Our observed hydration dynamics are consistent with previous studies, which support the view that melittin forms an 7-helix and inserts into the lipid bilayers and leaves the hydrophilic C-terminus protruding into the water channel. The orientational relaxation shows a completely restricted motion of Trp 19, and the anisotropy is constant in 1.5 ns (Fig. 20b), which is consistent with Trp 19 located close to the interface around the headgroups and rigid well-ordered water molecules. [Pg.109]


See other pages where Self-assembly of lipid bilayer is mentioned: [Pg.65]    [Pg.98]    [Pg.65]    [Pg.98]    [Pg.21]    [Pg.259]    [Pg.202]    [Pg.34]    [Pg.13]    [Pg.29]    [Pg.58]    [Pg.211]    [Pg.257]    [Pg.349]    [Pg.514]    [Pg.13]    [Pg.1036]    [Pg.20]    [Pg.3253]    [Pg.27]    [Pg.364]    [Pg.776]    [Pg.123]    [Pg.268]    [Pg.31]    [Pg.55]    [Pg.195]    [Pg.11]    [Pg.177]    [Pg.288]    [Pg.4]    [Pg.264]    [Pg.20]    [Pg.36]    [Pg.365]   
See also in sourсe #XX -- [ Pg.418 ]




SEARCH



Assembled lipid bilayers

Bilayer, lipidic

Lipid assembly

Lipid bilayer

Lipid bilayers

Self assembled bilayer

Self assembly, bilayers

© 2024 chempedia.info