Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selenium impurity

In two papers, [69KOZ/VAN] and [69UST/VIG4], the possibility of refining tellurium from 0.01 to 0.6 mass-% of selenium impurities by distillation has been stud-... [Pg.183]

Selenium and tellurium occur naturally in sulphide ores, usually as an impurity in the sulphide of a heavy metal. They are recovered from the flue dust produced when the heavy metal sulphide is roasted. [Pg.262]

Selenium and precious metals can be removed selectively from the chlorination Hquor by reduction with sulfur dioxide. However, conditions of acidity, temperature, and a rate of reduction must be carefliUy controlled to avoid the formation of selenium monochloride, which reacts with elemental selenium already generated to form a tar-like substance. This tar gradually hardens to form an intractable mass which must be chipped from the reactor. Under proper conditions of precipitation, a selenium/precious metals product substantially free of other impurities can be obtained. Selenium can be recovered in a pure state by vacuum distillation, leaving behind a precious metals residue. [Pg.330]

Tellurium and many other impurities remain undissolved. The solution is filtered and cooled to reverse the reaction and to deposit soHd selenium. Oeselenized liquor is recycled to the dissolution step. [Pg.331]

Selenium purification by zone refining is not feasible. At practical zone-refining speeds, crystallization does not occur and impurities do not segregate. However, a controlled differential thermal treatment of selenium in a long vertical glass tube has been described (45). The treatment time is several weeks to several months. [Pg.331]

Purification. Tellurium can be purified by distillation at ambient pressure in a hydrogen atmosphere. However, because of its high boiling point, tellurium is also distilled at low pressures. Heavy metal (iron, tin, lead, antimony, and bismuth) impurities remain in the still residue, although selenium is effectively removed if hydrogen distillation is used (21). [Pg.386]

Betts Electrolytic Process. The Betts process starts with lead bullion, which may carry tin, silver, gold, bismuth, copper, antimony, arsenic, selenium, teUurium, and other impurities, but should contain at least 90% lead (6,7). If more than 0.01% tin is present, it is usually removed from the bullion first by means of a tin-drossing operation (see Tin AND TIN ALLOYS, detinning). The lead bullion is cast as plates or anodes, and numerous anodes are set in parallel in each electrolytic ceU. Between the anodes, thin sheets of pure lead are hung from conductor bars to form the cathodes. Several ceUs are connected in series. [Pg.123]

Fite refining adjusts the sulfur and oxygen levels in the bhster copper and removes impurities as slag or volatile products. The fire-refined copper is sold for fabrication into end products, provided that the chemistry permits product specifications to be met. Some impurities, such as selenium and nickel, are not sufficiently removed by fire refining. If these impurities are detrimental to fabrication or end use, the copper must be electrorefined. Other impurities, such as gold, silver, selenium, and tellurium, are only recovered via electrorefining. Virtually all copper is electrorefined. [Pg.201]

Anode impurities either dissolve in the electrolyte or fall to the bottom of the electrolytic cell as anode slime. These slimes contain silver, gold, selenium, and tellurium and represent a very significant value. Thus, the recovery of by-products from the anode slime is an important operation. [Pg.202]

Although some changes occur in the melting furnace, cathode impurities are usually reflected directly in the final quaUty of electrorefined copper. It is commonly accepted that armealabiUty of copper is unfavorably affected by teUurium, selenium, bismuth, antimony, and arsenic, in decreasing order of adverse effect. Silver in cathodes represents a nonrecoverable loss of silver to the refiner. If the copper content of electrolyte is maintained at the normal level of 40—50 g/L, and the appropriate ratio of arsenic to antimony and bismuth (29) is present, these elements do not codeposit on the cathode. [Pg.203]

The sulfiu can be piped long distances in liquid form or transported molten in ships, barges or rail cars. Alternatively it can be prilled or bandied as nuggets or chunks. Despite the vast bulk of liquid sulfur mined by the Frasch process it is obtained in very pure form. There is virtually no selenium, tellurium or arsenic impurity, and the product is usually 99.5-99.9% pure. ... [Pg.650]

When a solid compound possesses a relatively high vapor pressure below its melting point, it may be possible to purify it by sublimation. Selenium dioxide, for example, is easily purified prior to use by sublimation at atmospheric pressure (Chapter 1, Section XI). More commonly, the method of choice is sublimation at reduced pressure, which allows more ready evaporation of solids with limited volatility. A convenient vacuum sublimation apparatus is shown in Fig. A3.19. The impure sample is placed in the... [Pg.184]

A process for the gravimetric determination of mixtures of selenium and tellurium is also described. Selenium and tellurium occur in practice either as the impure elements or as selenides or tellurides. They may be brought into solution by mixing intimately with 2 parts of sodium carbonate and 1 part of potassium nitrate in a nickel crucible, covering with a layer of the mixture, and then heating gradually to fusion. The cold melt is extracted with water, and filtered. The elements are then determined in the filtrate. [Pg.466]

Commercial elemental sulfur is usually of bright-yellow color at 20 °C [36]. Pure orthorhombic a-Ss is, however, of greenish-yellow color at 20 °C but totally colorless at 77 K while commercial sulfur often remains pale-yellow at this temperature [59]. The reasons for this different behavior are twofold. Commercial samples are never pure Ss but besides traces of organic impurities they always contain Sy in concentrations of between 0.1 and 0.5% [59]. Sulfur found as a mineral in Nature sometimes also contains Sy but in addition traces of selenium are quite often present (up to 680 ppm Se, probably as SySe molecules) [60]. These minor components influence the color of the samples at ambient and low temperatures in the sense that a more orange-type of yellow ( egg-yellow ) is recognized. [Pg.41]

The anode potential is so positive, due principally to the activation overpotential, that the majority of the impurity metals (Fe, Cu, Co, etc.) in the anode dissolve with the nickel sulfide. In addition, some oxygen is evolved (2 H20 = 02 + 4 H+ + 4 e ). The anodic current efficiency reduced to about 95% on account of this reaction. Small amounts of selenium and the precious metals remain undissolved in the anode slime along with sulfur. The anolyte contains impurities (Cu, Fe, Co) and, due to hydrogen ion (H+) liberation, it has a low pH of 1.9. The electrolyte of this type is highly unfit for nickel electrowinning. It is... [Pg.723]

Sulfide ores usually contain small amounts of mercury, arsenic, selenium, and tellurium, and these impurities volatilize during the ore treatment. All the volatilized impurities, with the exception of mercury, are collected in the dust recovery systems. On account of its being present in low concentrations, mercury is not removed by such a system and passes out with the exit gases. The problem of mercury contamination is particularly pertinent to zinc plants since the sulfidic ores of zinc contain traces of mercury (20-300 ppm). The mercury traces in zinc sulfide concentrates volatilize during roasting and contaminate the sulfuric acid that is made from the sulfur dioxide produced. If the acid is then used to produce phosphatic fertilizers, this may lead to mercury entering the food chain as a contaminant. Several processes have been developed for the removal of mercury, but these are not yet widely adopted. [Pg.772]

The method used for introducing the double bond produced toxic selenium waste and impurities containing selenium that were difficult to remove. [Pg.80]

Electrolytic copper refining Blister copper Process wastewater Slimes containing impurities such as gold, silver, antimony, arsenic, bismuth, iron, lead, nickel, selenium, sulfur, and zinc... [Pg.85]


See other pages where Selenium impurity is mentioned: [Pg.334]    [Pg.41]    [Pg.334]    [Pg.334]    [Pg.41]    [Pg.334]    [Pg.354]    [Pg.71]    [Pg.523]    [Pg.605]    [Pg.686]    [Pg.965]    [Pg.193]    [Pg.330]    [Pg.331]    [Pg.337]    [Pg.198]    [Pg.202]    [Pg.207]    [Pg.210]    [Pg.211]    [Pg.211]    [Pg.211]    [Pg.256]    [Pg.157]    [Pg.748]    [Pg.4]    [Pg.12]    [Pg.81]    [Pg.128]    [Pg.496]    [Pg.717]    [Pg.79]    [Pg.606]    [Pg.1518]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



© 2024 chempedia.info