Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary reactions mechanisms

Shilov [5] has limited considerations in regard to the final equation for conjugating reactions and determination of an intermediate substance which stipulates the initiating action of the primary reaction. However, this is not nearly complete enough to describe the secondary reaction mechanism, which should be changed during the conjugation process. [Pg.45]

SIMS Secondary Ion mass spectroscopy A beam of low-energy Ions Impinges on a surface, penetrates the sample and loses energy In a series of Inelastic collisions with the target atoms leading to emission of secondary Ions. Surface composition, reaction mechanism, depth profiles... [Pg.1852]

The free radicals that we usually see in carbon chemistry are much less stable than these Simple alkyl radicals for example require special procedures for their isolation and study We will encounter them here only as reactive intermediates formed m one step of a reaction mechanism and consumed m the next Alkyl radicals are classified as primary secondary or tertiary according to the number of carbon atoms directly attached to the carbon that bears the unpaired electron... [Pg.168]

Primary and secondary aliphatic and aromatic amines react readily with thiiranes to give 2-mercaptoethylamine derivatives (Scheme 76) (76RCR25, 66CRV297). The reaction fails or gives poor yields with amines which are sterically hindered e.g. N,iV-dicyclohexylamine) or whose nitrogen atom is weakly basic e.g. N,A/ -diphenylamine). Aromatic amines are less reactive and higher reaction temperatures are usually required for them. The reaction mechanism is Sn2 and substituted thiiranes are attacked preferentially at the least hindered... [Pg.158]

In all the reactions described so far a chiral Lewis acid has been employed to promote the Diels-Alder reaction, but recently a completely different methodology for the asymmetric Diels-Alder reaction has been published. MacMillan and coworkers reported that the chiral secondary amine 40 catalyzes the Diels-Alder reaction between a,/ -unsaturated aldehydes and a variety of dienes [59]. The reaction mechanism is shown in Scheme 1.73. An a,/ -unsaturated aldehyde reacts with the chiral amine 40 to give an iminium ion that is sufficiently activated to engage a diene reaction partner. Diels-Alder reaction leads to a new iminium ion, which upon hydrolysis af-... [Pg.46]

The mechanisms of corrosion by steam are similar to those for water up to 450°C, but at higher temperatures are more closely related to the behaviour in carbon dioxide. Studies at 100°C have demonstrated that uranium hydride is produced during direct reaction of the water vapour with the metal and not by a secondary reaction with the hydrogen product. Also at 100°C it has been shown that the hydride is more resistant than the metal. Inhibition with oxygen reduces the evolution of hydrogen and does not involve reaction of the oxygen with the uranium . Above 450°C the hydride is not... [Pg.909]

To understand why a racemic product results from the reaction of T120 wjtl 1-butene, think about the reaction mechanism. 1-Butene is first protonaled tc yield an intermediate secondary (2°) carbocation. Since the trivalent carbon i sp2-hybridized and planar, the cation has no chirality centers, has a plane o symmetry, and is achiral. As a result, it can react with H20 equally well fron either the top or the bottom. Reaction from the top leads to (S)-2-butano through transition state 1 (TS 1) in Figure 9.15, and reaction from the bottorr leads to R product through TS 2. The two transition states are mirror images. The] therefore have identical energies, form at identical rates, and are equally likeb to occur. [Pg.311]

A third mechanism of protodeboronation has been detected in the reaction of benzeneboronic acids with water at pH 2-6.7625. In addition to the acid-catalysed reaction described above, a reaction whose rate depended specifically on the concentration of hydroxide ion was found. In a preliminary investigation with aqueous malonate buffers (pH 6.7) at 90 °C, 2-, 4-, and 2,6-di-methoxybenzeneboronic acids underwent deboronation and followed first-order kinetics. A secondary reaction produced an impurity which catalysed the deboronation, but this was unimportant during the initial portions of the kinetic runs. [Pg.294]

Henglein (23) has constructed a machine for studying stripping reactions which does not fall into any of the above categories. It consists of an ion gun followed by a flight tube which also serves as a reaction chamber. A velocity selector scans the ions which have suffered little or no change in direction, and energy analysis of the secondary ion beam is used to deduce cross-sections and reaction mechanisms in chosen simple cases. [Pg.120]

Other possible mechanisms have been considered O), but they either predict formation of products which are not observed, do not explain the observed O3/UDMH stoichiometry, or are inconsistent with the results of the UDMH-NO stoichiometry and the formation of nitrosamine and H2O2 in this system. The other products observed, and the fact that the nitrosamine and H2O2 yields are somewhat less than the predicted 100% and 50% of the UDMH consumed, can be attributed to possible secondary reactions of the nitrosamine with the OH radical. [Pg.121]

Typically, the reaction mechanism proceeds as follows [6], By photoreaction, two chlorine radicals are formed. These radicals react with the alkyl aromatic to yield a corresponding benzyl radical. This radical, in turn, breaks off the chlorine moiety to yield a new chlorine radical and is substituted by the other chlorine, giving the final product. Too many chlorine radicals lead to recombination or undesired secondary reactions. Furthermore, metallic impurities in micro reactors can act as Lewis catalysts, promoting ring substitution. Friedel-Crafts catalyst such as FeClj may induce the formation of resin-Uke products. [Pg.613]

However, the idea, that 96 may rearrange to the ortho isomer 93 via substituent migration or valence bond tautomerization, which would enable the CH3 loss to proceed as described in (20), could not be substantiated by experimental facts. For example, the secondary decompositions of the [M—CH3]+ ions formed from 93 and 96 are different with regard to the reaction channels and both the kinetic energy release and peak shapes associated with the reactions of interest. Moreover, the CA spectra of the [M—CH3]+ ions exhibit distinct differences. Thus, the [M—CH3]+ ions posses different ion structures and, consequently, a common intermediate and/or reaction mechanism for the process of methyl elimination from ionized 93 and 96 are very unlikely (22). [Pg.18]

The cyclic phosphonium salts 140,141,143,145, and 146 so obtained are evidence for the mechanism of the oxaphospholic cyclization and especially for the main role of the tertiary carbocation formation during the process. The additional data which support this assumption, come from the investigation of the same reaction, but with different substrate, i.e., dimethyl(l,2-hexadienyl)phosphine oxide 147. In this case, the reaction mechanism involved formation of secondary carbocation that gives oxaphosphole product 148 only in 10% yield (Scheme 60) [124],... [Pg.48]

The conclusions derived from the preceding experiments may be summarized with the aid of the reaction mechanism illustrated in Scheme II. The ester undergoes a rapid, reversible association with the cycloamylose, C—OH. An alkoxide ion derived from a secondary hydroxyl group of the cycloamylose may then react with an included ester molecule to liberate a phenolate ion and produce an acylated cycloamylose. This reaction is characterized by a rate constant, jfc2(lim), the maximal rate constant for the appearance of the phenolate ion from the fully complexed ester in the pH range where the cycloamylose is completely ionized. Limiting rates are seldom achieved, however, because of the high pK of cycloamylose. [Pg.230]

The chromatograms of the liquid phase show the presence of smaller and larger hydrocarbons than the parent one. Nevertheless, the main products are n-alkanes and 1-alkenes with a carbon number between 3 to 9 and an equimolar distribution is obtained. The product distribution can be explained by the F-S-S mechanism. Between the peaks of these hydrocarbons, it is possible to observe numerous smaller peaks. They have been identified by mass spectrometry as X-alkenes, dienes and also cyclic compounds (saturated, partially saturated and aromatic). These secondary products start to appear at 400 °C. Of course, their quantities increase at 425 °C. As these hydrocarbons are not seen for the lower temperature, it is possible to imagine that they are secondary reaction products. The analysis of the gaseous phase shows the presence of hydrogen, light alkanes and 1-alkenes. [Pg.351]

Glutaraldehyde is the most popular b/s-aldchydc homobifunctional crosslinker in use today. Flowever, a glance at glutaraldehyde s structure is not indicative of the complexity of its possible reaction mechanisms. Reactions with proteins and other amine-containing molecules would be expected to proceed through the formation of Schiff bases. Subsequent reduction with sodium cyanoborohydride or another suitable reductant would yield stable secondary amine... [Pg.265]

The methylation of secondary amines works better than for primary amines because there is no competition between the formation of mono- or dimethylated products. The best results for the microwave-enhanced conditions were obtained when the molar ratios of substrate/formaldehyde/formic acid were 1 1 1, so that the amount of radioactive waste produced is minimal. The reaction can be carried out in neat form if the substrate is reasonably miscible with formic acid/aldehyde or in DM SO solution if not. Again the reaction is rapid - it is complete within 2 min at 120 W microwave irradiation compared to longer than 4 h under reflux. The reaction mechanism and source of label is ascertained by alternatively labeling the formaldehyde and formic acid with deuterium. The results indicate that formaldehyde contri-... [Pg.448]


See other pages where Secondary reactions mechanisms is mentioned: [Pg.2798]    [Pg.346]    [Pg.227]    [Pg.14]    [Pg.423]    [Pg.2]    [Pg.411]    [Pg.111]    [Pg.235]    [Pg.257]    [Pg.197]    [Pg.138]    [Pg.351]    [Pg.103]    [Pg.357]    [Pg.499]    [Pg.65]    [Pg.183]    [Pg.541]    [Pg.79]    [Pg.89]    [Pg.98]    [Pg.201]    [Pg.122]    [Pg.210]    [Pg.120]    [Pg.134]    [Pg.264]    [Pg.266]    [Pg.540]    [Pg.193]    [Pg.262]   
See also in sourсe #XX -- [ Pg.324 ]




SEARCH



Secondary reactions

© 2024 chempedia.info