Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic compounds, also

Cyclic compounds also exist in stereoisomeric forms. Let us now study the case of cyclopentane, 1, 2 diol. It has two chiral carbons and exists in three stereoisomeric forms. [Pg.137]

Question 13.5 Read Section 13.4.1. Suggest a reason for the reaction of ThCp 2(CH2 CMc3)2 in forming a cyclic compound, also a reason for the reactivity of the metalla-cycles. [Pg.223]

Carbon atoms can also form cyclic compounds. Aromatic hydrocarbons (arenes), of which benzene is the parent, consist of a cyclic arrangement of formally unsaturated carbons, which, however, give a stabilized (in contrast to their hypothetical cyclopolyenes), delocalized system. [Pg.127]

Electrocyclic reactions of 1,3,5-trienes lead to 1,3-cyclohexadienes. These ring closures also exhibit a high degree of stereospecificity. The ring closure is normally the favored reaction in this case, because the cyclic compound, which has six a bonds and two IT bonds, is thermodynamically more stable than the triene, which has five a and three ir bonds. The stereospecificity is illustrated with octatrienes 3 and 4. ,Z, -2,4,6-Octatriene (3) cyclizes only to cw-5,6-dimethyl-l,3-cyclohexadiene, whereas the , Z,Z-2,4,6-octa-triene (4) leads exclusively to the trans cyclohexadiene isomer. A point of particular importance regarding the stereochemistry of this reaction is that the groups at the termini of the triene system rotate in the opposite sense during the cyclization process. This mode... [Pg.607]

These compounds yield, on hydrolysis, the free acids, which, like all acids containing two carbo.xyl groups attached to the same carbon atom, lose COj on heating. Thus, ethyl malonic acid yields butyric acid. In this way the synthesis of monobasic acids may be readily effected. Malonic ester, moreover, may be used in the preparation of cyclic compounds as well as of tetrabasic and also dibasic acids of the malonic acid series ( Perkin). To give one illustration malonic ester, and ethylene bromide in presence of sodium alcoholate, yield triniethyleiic dicarbo.xylic ester and tetramethylene tetracarbo.xylic ester. The first reaction takes place in two steps,... [Pg.256]

Benzyl alcohol may be also obtained by the action of caustic potash on benzaldehyde (see Reaction 4, p. 197). This leaction is specially characteristic of cyclic-compounds containing an aldehyde-group in the nucleus, although some of the higher aliphatic aldehydes behave in a similar fashion (Canmzzaio), 2C0H5COII -I KOII = CuII,CH,OII 4- Q,I/r,COOK. [Pg.300]

The cyclic borazine (-BH-NH-)3 and its derivatives form one of the largest classes of B-N compounds. The parent compound, also known as inorganic benzene , was first isolated as a colourless liquid from the mixture of products obtained by reacting B2H6 and NH3 (A. Stock and E. Pohland, 1926) ... [Pg.210]

Nitro compounds have been converted into various cyclic compounds via cycloaddidon reactions. In particular, nitroalkenes have proved to be nsefid in Diels-Alder reactions. Under thermal conditions, they behave as electron-deficient alkenes ind react v/ith dienes to yield 3-nitrocy-clohexenes. Nitroalkenes c in also act as heterodienes ind react v/ith olefins in the presence of Lewis acids to yield cyclic alkyl nkronates, which undergo [3- 2 cycloaddidon. Nitro compounds are precursors for nitnie oxides, alkyl nitronates, and trialkylsilyl nitronates, which undergo [3- 2 cycloaddldon reacdons. Thus, nitro compounds play important roles in the chemistry of cycloaddidon reacdons. In this chapter, recent developments of cycloaddinon chemistry of nitro compotmds and their derivadves are summarized. [Pg.231]

Enklaar has showil that when citral is reduced by metals in a stream of hydrogen, it yields not only reduced aliphatic compounds, but that the ring is also closed, and a series of cyclic compounds is also formed. [Pg.185]

Consecutive Michael additions and alkylations can also be used for the diastereoselective synthesis of 5- and 6-membered ring systems. For instance when 6-iodo-2-hexenoates or 7-iodo-2-heptenoates are employed the enolate of the Michael adduct is stereoselectively quenched in situ to provide the cyclic compound with trans stereochemistry (>94 6 diastereomeric ratio). As the enolate geometry of the Michael donor can be controlled, high stereoselectivity can also be reached towards either the syn or anti configuration at the exocyclic... [Pg.995]

Stansbury and Bailey. A review by Colombam on addition-fragmentation processes is also relevant. Monomers used in ring-opening are typically vinyl (e.g. vinylcyclopropane - Scheme 4.20 Section 4.4.2.1) or methylene substituted cyclic compounds (e.g. ketene acetals - Section 4.4.2.2) where addition to the double bond is followed by p-scission. [Pg.195]

Open-chain and cyclic compounds containing azo groups (-N2 —), such as azoalkanes, azoarenes, pyrazolines, triazolines, etc. may also eliminate N2, but these reactions are called azo-extrusions (IUPAC, 1989 a). The terms denitrogenation and nitrogen extrusion, both used by Adam et al. (1992, 1993) and by Adam and Sengelbach (1993) should not be used. They are superfluous and ambiguous. [Pg.161]

The alkanephosphonic acid dichlorides obtained by these methods are converted with amines, with all reactions carried out in solvents such as acetone, benzene, or diethyl ether at 10°C with triethylamine as HC1 captor. The conversion runs quantitatively followed by a purification with the help of column chromatography with chloroform/methanol in a ratio of 9 1 as mobile phase. The alkanephosphonic acid bisdiethanolamides could be obtained as pure substances with alkane residues of C8, C10, C12, and Ci4. The N-(2-hydroxyethane) alkanephosphonic acid 0,0-diethanolamide esters were also prepared in high purity. The obtained surfactants are generally stable up to 100°C. Only the alkanephosphonic acid bismonomethylamides are decomposed beneath this temperature forming cyclic compounds. [Pg.581]

The addition, therefore, follows Markovnikov s rule. Primary alcohols give better results than secondary, and tertiary alcohols are very inactive. This is a convenient method for the preparation of tertiary ethers by the use of a suitable alkene such as Me2C=CH2. Alcohols add intramolecularly to alkenes to generate cyclic ethers, often bearing a hydroxyl unit as well. This addition can be promoted by a palladium catalyst, with migration of the double bond in the final product. Rhenium compounds also facilitate this cyclization reaction to form functionalized tetrahydrofurans. [Pg.996]

Alkenes and alkynes can also add to each other to give cyclic products in other ways (see 15-61 and 15-63). The first exclusive exo-dig carbocyclization was reported using HfCU as a catalyst. Alkynes also add to alkenes for form rings in the presence of a palladium catalyst or a zirconium catalyst. " Carbocyclization of an alkene unit to another alkene unit was reported using an yttrium catalyst and alkenes add to alkynes to give cyclic compounds with titanium catalysts. ... [Pg.1021]

In Section 3 of this chapter it was mentioned that polymers obtained by intermolecular condensation of bifunctional monomers may often be prepared alternatively by an addition polymerization of a cyclic compound having the same composition as the structural unit. Typical examples are shown in Table III. The processes indicated are appropriately regarded as addition polymerizations. Each of these polymers may also be prepared through the condensation of suitable bifunctional monomers. The dimethylsiloxane polymer, for example, may be prepared, as indicated in Table I (p. 45), through the condensation of dimethyl dihydroxysilane formed by hydrolysis of the di-chlorosilane... [Pg.57]

Polymerization of cyclic compounds may also occur by ionic mechanisms under the influence of strong acids or bases and in the absence of water and alcohols. Thus, in the presence of a strong acid or electron acceptor (BF3), ethylene oxide may polymerize violently. The mechanism may be the following, where the electron acceptor is represented by the hydrogen ion ... [Pg.61]


See other pages where Cyclic compounds, also is mentioned: [Pg.93]    [Pg.120]    [Pg.175]    [Pg.120]    [Pg.175]    [Pg.395]    [Pg.145]    [Pg.47]    [Pg.227]    [Pg.208]    [Pg.522]    [Pg.93]    [Pg.120]    [Pg.175]    [Pg.120]    [Pg.175]    [Pg.395]    [Pg.145]    [Pg.47]    [Pg.227]    [Pg.208]    [Pg.522]    [Pg.233]    [Pg.290]    [Pg.305]    [Pg.311]    [Pg.122]    [Pg.259]    [Pg.129]    [Pg.824]    [Pg.122]    [Pg.321]    [Pg.528]    [Pg.526]    [Pg.1039]    [Pg.1040]    [Pg.1408]    [Pg.84]    [Pg.14]    [Pg.239]    [Pg.97]   


SEARCH



Cyclic compounds

© 2024 chempedia.info