Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hormones second messenger

Earl Sutherland of Vanderbilt University won the 1971 Nobel Prize in physiology or medicine for uncovering the role of cAMP as a second messenger in connection with his studies of the fight or flight hormone epineph rine (Section 27 6)... [Pg.1161]

Oxytocin and Vasopressin Receptors. The actions of oxytocin and vasopressin are mediated through their interactions with receptors. Different receptor types as well as different second messenger responses help explain their diverse activities in spite of the hormones stmctural similarities. Thus oxytocin has at least one separate receptor and vasopressin has been shown to have two principal receptor types, and V2. Subclasses of these receptors have been demonstrated, and species differences further compHcate experimental analysis. It is apparent that both oxytocin and receptors function through the GP/1 phosphoHpase C complex (75), while the V2 receptors activate cycHc AMP (76). [Pg.191]

Pseudohypoparathyroidism is characterized by end-organ resistance to parathyroid hormone (98,108). This disease takes various forms, including Albright s hereditary osteodystrophy, which has unusual physical features and a generalized resistance to G-protein-linked hormones that function through cAMP as a second messenger. This defect is associated with a deficiency in the levels of the a-subunit of (109). Because this defect may be generalized, such patients also have olfactory dysfunction (110). [Pg.283]

Guanylyl cyclases (GC) are a family of enzymes (EC 4.6.1.2) that catalyse the formation of the second messenger cyclic GMP (cGMP) from guanosine triphosphate (GTP). GCs are subdivided in soluble GCs and GCs that are membrane-bound and linked to a receptor. Activation occurs by nitric oxide (NO) and pqrtide hormones, respectively [1,2]. [Pg.572]

MANY HORMONES ACT THROUGH ALLOSTERIC SECOND MESSENGERS... [Pg.76]

Phosphorylation by protein kinases of specific seryl, threonyl, or tyrosyl residues—and subsequent dephosphorylation by protein phosphatases—regulates the activity of many human enzymes. The protein kinases and phosphatases that participate in regulatory cascades which respond to hormonal or second messenger signals constimte a bio-organic computer that can process and integrate complex environmental information to produce an appropriate and comprehensive cellular response. [Pg.79]

The inositol is present in ph osphatidylinositol as the stereoisomer, myoinositol (Figure 14—8). Phosphatidylinositol 4,5-hisphosphate is an important constituent of cell membrane phosphohpids upon stimulation by a suitable hormone agonist, it is cleaved into diacylglycerol and inositol trisphosphate, both of which act as internal signals or second messengers. [Pg.115]

Cyclic AMP (cAMP) (Figure 18-5) is formed from ATP by adenylyl cyclase at the inner surface of cell membranes and acts as an intracellular second messenger in response to hormones such as epinephrine, norepinephrine, and glucagon. cAMP is hydrolyzed by phosphodiesterase, so terminating hormone action. In hver, insulin increases the activity of phosphodiesterase. [Pg.147]

Several groups have shown that hormonal stimuli which lead to NaCl secretion in normal tissues fail to do so in CF tissues (reviewed in [17,18,60]). The production of the second messenger cAMP was unimpeded in these CF tissues. Hence it was... [Pg.288]

The most common second messenger activated by protein/peptide hormones and catecholamines is cyclic adenosine monophosphate (cAMP). The pathway by which cAMP is formed and alters cellular function is illustrated in Figure 10.1. The process begins when the hormone binds to its receptor. These receptors are quite large and span the plasma membrane. On the cytoplasmic surface of the membrane, the receptor is associated with a G protein that serves as the transducer molecule. In other words, the G protein acts as an intermediary between the receptor and the second messengers that will alter cellular activity. These proteins are referred to as G proteins because they bind with guanosine nucleotides. In an unstimulated cell, the inactive G protein binds guanosine diphosphate (GDP). When the hormone... [Pg.116]

Figure 10.1 ThecyclicAMPsecondmessengersystem.Themostcommonsecond messenger system activated by the protein/peptide hormones and the catecholamines involves the formation of cAMP. This multistep process is initiated by binding of the hormone (the first messenger) to its receptor on the cell surface. The subsequent increase in the formation of cAMP (the second messenger) leads to the alteration of enzyme activity within the cell. A change in the activity of these enzymes alters cellular metabolism. Figure 10.1 ThecyclicAMPsecondmessengersystem.Themostcommonsecond messenger system activated by the protein/peptide hormones and the catecholamines involves the formation of cAMP. This multistep process is initiated by binding of the hormone (the first messenger) to its receptor on the cell surface. The subsequent increase in the formation of cAMP (the second messenger) leads to the alteration of enzyme activity within the cell. A change in the activity of these enzymes alters cellular metabolism.
The cAMP molecule serves as the second messenger, which carries out the effects of the hormone inside the cell. The primary function of cAMP is to activate protein kinase A. This kinase then attaches phosphate groups to specific enzymatic proteins in the cytoplasm. The phosphorylation of these enzymes enhances or inhibits their activity, resulting in the enhancement or inhibition of specific cellular reactions and processes. Either way, cellular... [Pg.117]

As with signal transduction and second messenger systems, the mechanism of gene activation allows for amplification of the hormone s effect. [Pg.118]

The primary hormonal signals serve as extracellular signals that are interpreted by a signal transduction apparatus and turned into signals within the cell—these second messengers such as cAMP and fructose 2,6-bisphosphate warn individual enzymes within the cell about what s happening outside. [Pg.211]

Hormonal actions on target neurons are classified in terms of cellular mechanisms of action. Hormones act either via cell-surface or intracellular receptors. Peptide hormones and amino-acid derivatives, such as epinephrine, act on cell-surface receptors that do such things as open ion-channels, cause rapid electrical responses and facilitate exocytosis of hormones or neurotransmitters. Alternatively, they activate second-messenger systems at the cell membrane, such as those involving cAMP, Ca2+/ calmodulin or phosphoinositides (see Chs 20 and 24), which leads to phosphorylation of proteins inside various parts of the target cell (Fig. 52-2A). Steroid hormones and thyroid hormone, on the other hand, act on intracellular receptors in cell nuclei to regulate gene expression and protein synthesis (Fig. 52-2B). Steroid hormones can also affect cell-surface events via receptors at or near the cell surface. [Pg.846]

FIGURE 52-2 There are two modes of hormonal action. (A) Activation of cell-surface receptors and coupled second-messenger systems, with a variety of intracellular consequences. (B) Entry of hormone into the target cell, binding to and activation of an intracellular receptor and binding of the receptor-hormone complex to specific DNA sequences to activate or repress gene expression. DAG, diacylglycerol HRE, hormone-response element. [Pg.846]

The effects of Li+ upon this system have been reviewed in depth by Mork [131]. Animal studies originally demonstrated that Li+ inhibits cAMP formation catalyzed by adenylate cyclase in a dose-dependent manner [132]. The level of cAMP in the urine of manic-depressive patients changes with mental state, being abnormally elevated during the switch period between depression and mania it is proposed that Li+ s inhibitory effect upon adenylate cyclase activity may correct this abnormality. Subsequent research, in accord with the initial experiments, have shown that Li+ s interference with this second messenger system involves more than one inhibitory action. At therapeutic levels, Li+ inhibits cAMP accumulation induced by many neurotransmitters and hormones, both in... [Pg.25]


See other pages where Hormones second messenger is mentioned: [Pg.422]    [Pg.422]    [Pg.1161]    [Pg.254]    [Pg.478]    [Pg.777]    [Pg.1]    [Pg.488]    [Pg.490]    [Pg.7]    [Pg.76]    [Pg.197]    [Pg.436]    [Pg.457]    [Pg.466]    [Pg.17]    [Pg.360]    [Pg.287]    [Pg.288]    [Pg.104]    [Pg.238]    [Pg.193]    [Pg.101]    [Pg.116]    [Pg.118]    [Pg.347]    [Pg.361]    [Pg.392]    [Pg.843]    [Pg.851]    [Pg.16]    [Pg.24]    [Pg.18]    [Pg.170]   
See also in sourсe #XX -- [ Pg.120 , Pg.121 , Pg.384 ]




SEARCH



Denominators in Hormone Action Receptors and Second Messengers

Hormonal messengers

Hormones second messenger system

Messengers

Second messenger systems, hormone action

Second messengers

Second messengers for thymic hormones

Second messengers hormonal secretion

© 2024 chempedia.info