Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sea calcium

Emerson S.R. and Bender M.L. (1981) Carbon fluxes at the sediment-water inter in the deep-sea Calcium carbonate preservation. J. Mar. Res. 39, 139-162. [Pg.627]

Surface water Is usually undersaturated in calcium ions (Ca ). Where (even saturated) surface water mixes with sea water, mixing zone corrosion will dissolve calcium carbonate. Evidence of this occurring may be seen on islands. [Pg.88]

The alkali metals of Group I are found chiefly as the chlorides (in the earth s crust and in sea water), and also as sulphates and carbonates. Lithium occurs as the aluminatesilicate minerals, spodimene and lepidolite. Of the Group II metals (beryllium to barium) beryllium, the rarest, occurs as the aluminatesilicate, beryl-magnesium is found as the carbonate and (with calcium) as the double carbonate dolomite-, calcium, strontium and barium all occur as carbonates, calcium carbonate being very plentiful as limestone. [Pg.122]

Bromides of sodium, potassium, magnesium and calcium occur in sea water (about 0.07 % bromine) but the Dead Sea contains much more (5% bromine). Salt deposits (e.g. at Stassfurt) also contain these bromides. Silver bromide, AgBr, is found in South America. [Pg.318]

By experimentally determining the ratio of abundances of C and isotope peaks for CO2 dissolved in sea water at various temperatures, a graph can be drawn relating the solubility of CO2 compared with that of CO2 (the ratio described above). On extracting the CO2 from sediment containing the shells (calcium carbonate) of dead sea creatures by addition of acid, a ratio (R) of abundances of CO2 to CO2 can be measured. If this value is read from the graph, a temperature T is extrapolated, indicating the temperature of the sea at the time the sediment was laid down. Such experiments have shown that 10,000 years ago the temperature of the Mediterranean was much as it is now. [Pg.340]

One method for measuring the temperature of the sea is to measure this ratio. Of course, if you were to do it now, you would take a thermometer and not a mass spectrometer. But how do you determine the temperature of the sea as it was 10,000 years ago The answer lies with tiny sea creatures called diatoms. These have shells made from calcium carbonate, itself derived from carbon dioxide in sea water. As the diatoms die, they fall to the sea floor and build a sediment of calcium carbonate. If a sample is taken from a layer of sediment 10,000 years old, the carbon dioxide can be released by addition of acid. If this carbon dioxide is put into a suitable mass spectrometer, the ratio of carbon isotopes can be measured accurately. From this value and the graph of solubilities of isotopic forms of carbon dioxide with temperature (Figure 46.5), a temperature can be extrapolated. This is the temperature of the sea during the time the diatoms were alive. To conduct such experiments in a significant manner, it is essential that the isotope abundance ratios be measured very accurately. [Pg.341]

In a similar vein, mean seawater temperatures can be estimated from the ratio of 0 to 0 in limestone. The latter rock is composed of calcium carbonate, laid down from shells of countless small sea creatures as they die and fall to the bottom of the ocean. The ratio of the oxygen isotopes locked up as carbon dioxide varies with the temperature of sea water. Any organisms building shells will fix the ratio in the calcium carbonate of their shells. As the limestone deposits form, the layers represent a chronological description of the mean sea temperature. To assess mean sea temperatures from thousands or millions of years ago, it is necessary only to measure accurately the ratio and use a precalibrated graph that relates temperatures to isotope ratios in sea water. [Pg.351]

Salt that is substantially free of sulfate and other impurities is the cell feed. This grade may be purchased from commercial salt suppHers or made on site by purification of cmde sea or rock salt. Dried calcium chloride or cell bath from dismanded cells is added to the bath periodically as needed to replenish calcium coproduced with the sodium. The heat required to maintain the bath ia the molten condition is suppHed by the electrolysis current. Other electrolyte compositions have been proposed ia which part or all of the calcium chloride is replaced by other salts (61—64). Such baths offer improved current efficiencies and production of cmde sodium containing relatively Htde calcium. [Pg.167]

The approximate composition of surface water in the Dead Sea in 1966 (49) was given as 35 g/L calcium chloride 130 g/L magnesium chloride nearly 80 g/L sodium chloride more than 10 g/L potassium chloride nearly 4 g/L bromide and about 1 g/L sulfate. At 400 m depth the bromide concentration was 6 g/L. Bromine in Israel is produced from the Hquors left from potash production and the bromide content of these Hquors is 14 g/L. [Pg.285]

Great Salt Lake, Utah, is the largest terminal lake in the United States. From its brine, salt, elemental magnesium, magnesium chloride, sodium sulfate, and potassium sulfate ate produced. Other well-known terminal lakes ate Qinghai Lake in China, Tu2 Golu in Turkey, the Caspian Sea and Atal skoje in the states of the former Soviet Union, and Urmia in Iran. There ate thousands of small terminal lakes spread across most countries of the world. Most of these lakes contain sodium chloride, but many contain ions of magnesium, calcium, potassium, boron, lithium, sulfates, carbonates, and nitrates. [Pg.406]

Byproduct calcium Manufacture of Mainly in sea. Some In manufacture of floor... [Pg.499]

Potassium chloride is crystallized from sea bitterns containing chlorides of potassium, sodium and calcium by ammoniation (Jagadesh etai, 1992). This process is less energy intensive and more efficient than by fractional crystallization by evaporation, as the ammonia used is recovered by distillation. Crystallization produces a better quality product in terms of both size and purity than by other methods. [Pg.234]

A major biological sink for CO9 that is often overlooked is the calcium carbonate shells of corals, molluscs, and Crustacea. These invertebrate animals deposit CaCOa in the form of protective exoskeletons. In some invertebrates, such as the sderaetinians (hard corals) of tropical seas, photosynthetic dinoflagellates (kingdom Protoctista) known as zooxanthellae live within the ani-... [Pg.571]

Nordhftuser Schwefelsaure, Nordhftuser Vitri-oloL Nordhausen acid (fuming sulfuric acid), nordisch, a. northern, northerly, Nordic, nordlich, a. northerly, northern, arctic. Nord-licht, n. aurora borealis, -meer, n. Arctic Ocean, -ost, m. northeast northeaster, -pol, m. north pole. -see,/. North Sea. Norgeraniumsaure,/. norgeranic acid. Norgesalpeter, m. Norway saltpeter (calcium nitrate). [Pg.321]

Calcium ions in seawater muds can be controlled and removed by forming insoluble precipitates accomplished by adding alkalis such as caustic soda, lime, or barium hydroxide. Soda ash or sodium bicarbonate is of no value in controlling the total hardness of sea water. [Pg.670]

In sea-water, the increase of pH adjacent to the surface of cathodes brought about by the reduction of oxygen leads to the deposition of films of calcium carbonate and magnesium hydroxide . Such film deposition often results in a gradual decrease in the rate of galvanic corrosion of the more negative members of couples immersed in sea-water. [Pg.226]

Sea-water contains considerable amounts of soluble salts, particularly sodium chloride, which is present in concentrations from 1 to 25 7o. The North Sea, for example, contains about 3% sodium chloride, 0-47% magnesium sulphate, magnesium chloride and O-l calcium chloride. [Pg.819]

The elements Na, K, Cl, SO, Br, B, and F are the most conservative major elements. No significant variations in the ratios of these elements to chlorine have been demonstrated. Strontium has a small (< 0.5%) depletion in the euphotic zone (Brass and Turekian, 1974) possibly due to the plankton Acantharia, which makes its shell from SrS04 (celestite). Calcium has been known since the 19th century to be about 0.5% enriched in the deep sea relative to surface waters. Alkalinity (HCOf") also shows a deep enrichment. These elements are controlled by the formation... [Pg.259]

The moles X/moles P in average plankton is given by a, and b is the surface water concentration in phosphorus free water (water stripped of nutrients). In the case of P itself the surface ocean concentration is close to zero, while the deep Pacific has a concentration of 2.5 pM. For N, the N/P ratio of plankton is 16 and the surface water concentration is 0 pM. The predicted deep sea nitrate is 40 pM. The ratio of (deep)/(surface) is greater than 10. For calcium the Ca/P of... [Pg.268]


See other pages where Sea calcium is mentioned: [Pg.76]    [Pg.165]    [Pg.165]    [Pg.377]    [Pg.296]    [Pg.406]    [Pg.297]    [Pg.91]    [Pg.251]    [Pg.918]    [Pg.339]    [Pg.885]    [Pg.442]    [Pg.303]    [Pg.419]    [Pg.421]    [Pg.44]    [Pg.302]    [Pg.453]    [Pg.460]    [Pg.461]    [Pg.482]    [Pg.71]    [Pg.98]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Calcium in sea water

Factors Controlling the Accumulation of Calcium Carbonate in Deep Sea Sediments

Is the sea saturated with calcium carbonate

© 2024 chempedia.info