Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Magnesium elements

Silicon burning Magnesium Elements near iron 3 x 109 20... [Pg.95]

B. R,MgComplexes with Magnesium-Element Bonds Involving Groups... [Pg.147]

Mendeleev was convinced that he had discovered what he called the Periodic Law. The principle of the law was that the characteristics of the elements would vary periodically (that is, repeat at set intervals) as atomic weight went up. Characteristics such as specific density, oxidation states, and affinity (degree of chemical interactions) would vary for each element, but such variation was within a specific range that was common to a particular group. Thus, calcium (element 20) might be much heavier than magnesium (element 12) and only a bit heavier than potassium (element 19), but calcium and magnesium were related by chemical behavior. [Pg.81]

SCALE CAUSING ELEMENTS - Calcium and magnesium elements... [Pg.131]

It increased by one unit from one element to the next, for example magnesium 12. aluminium 13. This is clearly seen in Figure 13. Z was called the atomic number it was found to correspond to the charge on the nucleus of the atom (made up essentially of protons and neutrons), a charge equal and opposite to the number of extra nuclear... [Pg.4]

Group IIB and know that this means the group of elements zine. cadmium and mercury, whilst Group IIA refers to the alkaline earth metals beryllium, magnesium, calcium, barium and strontium. [Pg.13]

Table 2.6 shows the electron affinities, for the addition of one electron to elements in Periods 2 and 3. Energy is evolved by many atoms when they accept electrons. In the cases in which energy is absorbed it will be noted that the new electron enters either a previously unoccupied orbital or a half-filled orbital thus in beryllium or magnesium the new electron enters the p orbital, and in nitrogen electron-pairing in the p orbitals is necessary. [Pg.34]

The elements in Group II of the Periodic Table (alkaline earth metals) are. in alphabetical order, barium (Ba). beryllium (Be), calcium (Ca). magnesium (Mg), radium (Ra) and strontium (Sr). [Pg.136]

The properties of the head element of a main group in the periodic table resemble those of the second element in the next group. Discuss this diagonal relationship with particular reference to (a) lithium and magnesium, (b) beryllium and aluminium. [Pg.158]

After oxygen, silicon is the most abundant element in the earth s crust, It occurs extensively as the oxide, silica, in various forms, for example, flint, quartz, sand, and as silicates in rocks and clays, but not as the free element, silicon. Silicon is prepared by reduction of silica, Si02- Powdered amorphous silicon can be obtained by heating dry powdered silica with either powdered magnesium or a... [Pg.165]

Beryllium is found in some 30 mineral species, the most important of which are bertrandite, beryl, chrysoberyl, and phenacite. Aquamarine and emerald are precious forms of beryl. Beryl and bertrandite are the most important commercial sources of the element and its compounds. Most of the metal is now prepared by reducing beryllium fluoride with magnesium metal. Beryllium metal did not become readily available to industry until 1957. [Pg.11]

Although its electrical conductivity is only about 60% that of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but it can be alloyed with small amounts of copper, magnesium, silicon, manganese, and other elements to impart a variety of useful properties. [Pg.32]

Commercial production from petroleum ash holds promise as an important source of the element. High-purity ductile vanadium can be obtained by reduction of vanadium trichloride with magnesium or with magnesium-sodium mixtures. [Pg.71]

The Elements Beryllium (Be), Magnesium (Mg), and Calcium (Ca) all formed oxides in fhe ratio of one afom per oxygen atom RO Boron (B) and Aluminum (Al) formed R2O3 Carbon (C) and Silicon (Si) formed RO2... [Pg.224]

There are numerous variations of the wet process, but all involve an initial step in which the ore is solubilized in sulfuric acid, or, in a few special instances, in some other acid. Because of this requirement for sulfuric acid, it is obvious that sulfur is a raw material of considerable importance to the fertilizer industry. The acid—rock reaction results in formation of phosphoric acid and the precipitation of calcium sulfate. The second principal step in the wet processes is filtration to separate the phosphoric acid from the precipitated calcium sulfate. Wet-process phosphoric acid (WPA) is much less pure than electric furnace acid, but for most fertilizer production the impurities, such as iron, aluminum, and magnesium, are not objectionable and actually contribute to improved physical condition of the finished fertilizer (35). Impurities also furnish some micronutrient fertilizer elements. [Pg.224]

Some of the principal forms in which sulfur is intentionally incorporated in fertilizers are as sulfates of calcium, ammonium, potassium, magnesium, and as elemental sulfur. Ammonium sulfate [7783-20-2] normal superphosphate, and sulfuric acid frequendy are incorporated in ammoniation granulation processes. Ammonium phosphate—sulfate is an excellent sulfur-containing fertilizer, and its production seems likely to grow. Some common grades of this product are 12—48—0—5S, 12—12S, and 8—32—8—6.5S. [Pg.242]

Flame letaidancy can be impaited to plastics by incorporating elements such as bromine, chlorine, antimony, tin, molybdenum, phosphoms, aluminum, and magnesium, either duriag the manufacture or when the plastics are compounded iato some useful product. Phosphoms, bromine, and chlorine are usually iacorporated as some organic compound. The other inorganic flame retardants are discussed hereia. [Pg.454]

When prepared by direct reaction of the elements, magnesium hydride is stable in air and only mildly reactive with water. [Pg.299]

Magnesium [7439-95-4] atomic number 12, is in Group 2 (IIA) of the Periodic Table between beryllium and calcium. It has an electronic configuration of 1T2T2 3T and a valence of two. The element occurs as three isotopes with mass numbers 24, 25, and 26 existing in the relative frequencies of 77, 11.5, and 11.1%, respectively. [Pg.313]


See other pages where Magnesium elements is mentioned: [Pg.105]    [Pg.41]    [Pg.75]    [Pg.105]    [Pg.41]    [Pg.75]    [Pg.245]    [Pg.246]    [Pg.14]    [Pg.21]    [Pg.121]    [Pg.126]    [Pg.471]    [Pg.29]    [Pg.51]    [Pg.175]    [Pg.690]    [Pg.347]    [Pg.347]    [Pg.10]    [Pg.213]    [Pg.233]    [Pg.242]    [Pg.245]    [Pg.32]    [Pg.4]    [Pg.124]    [Pg.163]    [Pg.177]    [Pg.291]    [Pg.313]    [Pg.323]    [Pg.324]   
See also in sourсe #XX -- [ Pg.68 ]

See also in sourсe #XX -- [ Pg.68 ]

See also in sourсe #XX -- [ Pg.395 , Pg.395 ]




SEARCH



© 2024 chempedia.info