Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schiff-base hydrolysis

The values of the 15N CP MAS chemical shift of Lys296 nitrogen bonded to retinal via the —C=N bond ( Schiff base) was equal to 155.4 ppm for rhodopsin and 282.8 ppm for metarhodopsin (relative to 5.6 M aqueous NH4C1).70 The results proved the imine bond polarisation, which facilitates Schiff base hydrolysis. The comparison between chemical shifts for metarhodopsin and model compounds suggested that Schiff base linkage of the all-frans retinal chromophore in Metall is in a polar environment. [Pg.158]

The interest in the mechanisms of SchifF base hydrolysis stems largely from the fact that the formation and decomposition of SchifF base linkages play an important role in a variety of enzymatic reactions, for example, carbonyl transfers involving pyridoxal phosphate, aldol condensations, /3-decarboxylations and transaminations. The mechanisms for the formation and hydrolysis of biologically important SchifF bases, and imine intermediates, have been discussed by Bruice and Benkovic (1966) and by Jencks (1969). As the consequence of a number of studies (Jencks, 1959 Cordes and Jencks, 1962, 1963 Reeves, 1962 Koehler et al., 1964), the mechanisms for the hydrolysis of comparatively simple SchifF bases are reasonably well understood. From the results of a comprehensive kinetic investigation, the mechanisms for the hydrolysis of m- and p-substituted benzylidine-l,l-dimethylethylamines in the entire pH range (see, for example, the open circles in Fig. 13) have been discussed in terms of equations (23-26) (Cordes and Jencks, 1963) ... [Pg.337]

In conclusion, the overoxidized PAn is the de-protonated QI form, which can either undergo a further hydrolysis reaction to produce the final product, BQ, in aqueous media or can be re-activated by re-protonation or re-reduction in non-aqueous media. The hydrolysis mechanism of overoxidized PAn or pemigraniline films is similar to that of the Schiff base hydrolysis reaction. [Pg.457]

The overall pseudo first order rate constant for the Schiff base hydrolysis calculated from the initial slope was 9x10 sec". ... [Pg.312]

The mechanism of Schiff base hydrolysis continues to receive attention. Direct spectroscopic observation of the decay of two protonated imines, A-methylisobutylidene and A-isopropylethylidene, has enabled kinetic monitoring of the carbinolamine as a non-steady-state intermediate. " The kinetics and activation parameters for hydrolysis of the A-salicylidenes of m-methylaniline and p-chloroaniline have been monitored in the pH range 2.86-12.30 and 293-308 K a mechanism has been suggested to account for the rate minimum in the pH range 5.21-10.22 and subsequent plateau (found at pH >10.73 and >11.15, respectively). [Pg.12]

Simple esters cannot be allylated with allyl acetates, but the Schiff base 109 derived from o -amino acid esters such as glycine or alanine is allylated with allyl acetate. In this way. the o-allyl-a-amino acid 110 can be prepared after hydrolysis[34]. The Q-allyl-o-aminophosphonate 112 is prepared by allylation of the Schiff base 111 of diethyl aminomethylphosphonates. [35,36]. Asymmetric synthesis in this reaction using the (+ )-A, jV-dicyclohex-ylsulfamoylisobornyl alcohol ester of glycine and DIOP as a chiral ligand achieved 99% ec[72]. [Pg.306]

Aza-T-allylpalladium is formed from the Schiff base 193 and reacts with malonate to give a derivative of aspartic acid 194 after hydrolysis of the pro-duct[121]. [Pg.316]

Another viable method for the synthesis of L-foUc acid (1) starts from 6-formylpterin (23). The diester of L-glutamic acid (24) is condensed with 6-formylpterin (23). Reduction of the Schiff base with sodium borohydride is followed by hydrolysis to yield L-foUc acid (37). [Pg.39]

It is interesting to note that the hydrolysis of certain Schiff bases in weakly acidic solutions shows a similar mechanism (22). N-protonated substituted benzylidene-t-butylamines react with hydroxide ions to amino alcohols in the rate-determining step, and at lower pH the rate is almost entirely determined by attack of water on the protonated Schiff bases as a consequence of the rapidly decreasing concentration of hydroxide ions. [Pg.110]

Definitive identification of lysine as the modified active-site residue has come from radioisotope-labeling studies. NaBH4 reduction of the aldolase Schiff base intermediate formed from C-labeled dihydroxyacetone-P yields an enzyme covalently labeled with C. Acid hydrolysis of the inactivated enzyme liberates a novel C-labeled amino acid, N -dihydroxypropyl-L-lysine. This is the product anticipated from reduction of the Schiff base formed between a lysine residue and the C-labeled dihydroxy-acetone-P. (The phosphate group is lost during acid hydrolysis of the inactivated enzyme.) The use of C labeling in a case such as this facilitates the separation and identification of the telltale amino acid. [Pg.622]

The transaldolase functions primarily to make a useful glycolytic substrate from the sedoheptulose-7-phosphate produced by the first transketolase reaction. This reaction (Figure 23.35) is quite similar to the aldolase reaction of glycolysis, involving formation of a Schiff base intermediate between the sedohep-tulose-7-phosphate and an active-site lysine residue (Figure 23.36). Elimination of the erythrose-4-phosphate product leaves an enamine of dihydroxyacetone, which remains stable at the active site (without imine hydrolysis) until the other substrate comes into position. Attack of the enamine carbanion at the carbonyl carbon of glyceraldehyde-3-phosphate is followed by hydrolysis of the Schiff base (imine) to yield the product fructose-6-phosphate. [Pg.768]

A very simple and elegant alternative to the use of ion-exchange columns or extraction to separate the mixture of D-amino add amide and the L-amino add has been elaborated. Addition of one equivalent of benzaldehyde (with respect to die D-amino add amide) to the enzymic hydrolysate results in the formation of a Schiff base with die D-amino add amide, which is insoluble in water and, therefore, can be easily separated. Add hydrolysis (H2SQ4, HX, HNO3, etc.) results in the formation of die D-amino add (without racemizadon). Alternatively the D-amino add amide can be hydrolysed by cell-preparations of Rhodococcus erythropolis. This biocatalyst lacks stereoselectivity. This option is very useful for amino adds which are highly soluble in die neutralised reaction mixture obtained after acid hydrolysis of the amide. [Pg.279]

The procedure is modified for the reaction of preformed cyanohydrins with chiral amines39. I11 a further variation, Schiff bases of aliphatic aldehydes with optically active 1-arylalkyl-amines are transformed with liquid hydrogen cyanide to the corresponding a-aminonitrilcs, which, after acid hydrolysis, give the /V-aryUilkylamino acids. Hydrogenation then yields the a-amino acids40 41. [Pg.786]

Recent progress of basic and application studies in chitin chemistry was reviewed by Kurita (2001) with emphasis on the controlled modification reactions for the preparation of chitin derivatives. The reactions discussed include hydrolysis of main chain, deacetylation, acylation, M-phthaloylation, tosylation, alkylation, Schiff base formation, reductive alkylation, 0-carboxymethylation, N-carboxyalkylation, silylation, and graft copolymerization. For conducting modification reactions in a facile and controlled manner, some soluble chitin derivatives are convenient. Among soluble precursors, N-phthaloyl chitosan is particularly useful and made possible a series of regioselective and quantitative substitutions that was otherwise difficult. One of the important achievements based on this organosoluble precursor is the synthesis of nonnatural branched polysaccharides that have sugar branches at a specific site of the linear chitin or chitosan backbone [89]. [Pg.158]

Compounds containing carbon-nitrogen double bonds can be hydrolyzed to the corresponding aldehydes or ketones. For imines (W = R or H) the hydrolysis is easy and can be carried out with water. When W = H, the imine is seldom stable enough for isolation, and hydrolysis usually occurs in situ, without isolation. The hydrolysis of Schiff bases (W = Ar) is more difficult and requires acid or basic catalysis. Oximes (W = OH), arylhydrazones (W = NHAr), and, most easily, semicarbazones (W = NHCONH2) can also be hydrolyzed. Often a reactive aldehyde (e.g., formaldehyde) is added to combine with the liberated amine. [Pg.1177]

The deamination of primary amines such as phenylethylamine by Escherichia coli (Cooper et al. 1992) and Klebsiella oxytoca (Flacisalihoglu et al. 1997) is carried out by an oxidase. This contains copper and topaquinone (TPQ), which is produced from tyrosine by dioxygenation. TPQ is reduced to an aminoquinol that in the form of a Cu(l) radical reacts with O2 to form H2O2, Cu(ll), and the imine. The mechanism has been elucidated (Wihnot et al. 1999), and involves formation of a Schiff base followed by hydrolysis in reactions that are formally analogous to those involved in pyridoxal-mediated transamination. [Pg.185]

See structure 1. The reaction is conducted in dimethyl sulfoxide (DMSO), because DMSO is a very good solvent for the growing oligomers and its strong interaction with water prevents hydrolysis of the zirconium(IV) and favors the forward Schiff-base condensation reaction. [Pg.464]

Partial hydrolysis of a potentially heptadentate Schiff-base tripodal ligand derived from tris-(2-aminoethyl)amine and 2-hydroxyacetophenone, induced by copper(II) salts, was reported and the final copper(II) complex (377) was characterized.333 Using salicylaldehyde as a co-ligand, with a copper(II) complex (378), catalytic epoxidation was demonstrated 334... [Pg.817]


See other pages where Schiff-base hydrolysis is mentioned: [Pg.184]    [Pg.43]    [Pg.19]    [Pg.126]    [Pg.182]    [Pg.54]    [Pg.328]    [Pg.328]    [Pg.141]    [Pg.94]    [Pg.203]    [Pg.184]    [Pg.43]    [Pg.19]    [Pg.126]    [Pg.182]    [Pg.54]    [Pg.328]    [Pg.328]    [Pg.141]    [Pg.94]    [Pg.203]    [Pg.28]    [Pg.90]    [Pg.93]    [Pg.177]    [Pg.111]    [Pg.1175]    [Pg.192]    [Pg.115]    [Pg.139]    [Pg.206]    [Pg.348]    [Pg.336]    [Pg.846]    [Pg.1165]    [Pg.356]    [Pg.358]    [Pg.892]    [Pg.902]   
See also in sourсe #XX -- [ Pg.1177 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.7 , Pg.97 ]




SEARCH



Hydrolysis of Schiff bases

Hydrolysis of a Schiff’s base

Schiff base ligands hydrolysis

Schiff bases, formation hydrolysis

© 2024 chempedia.info