Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scattering spectroscopy based

The elemental composition, oxidation state, and coordination environment of species on surfaces can be determined by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) techniques. Both techniques have a penetration depth of 5-20 atomic layers. Especially XPS is commonly used in characterization of electrocatalysts. One common example is the identification and quantification of surface functional groups such as nitrogen species found on carbon-based catalysts.26-29 Secondary Ion Mass spectrometry (SIMS) and Ion Scattering Spectroscopy are alternatives which are more surface sensitive. They can provide information about the surface composition as well as the chemical bonding information from molecular clusters and have been used in characterization of cathode electrodes.30,31 They can also be used for depth profiling purposes. The quantification of the information, however, is rather difficult.32... [Pg.339]

Direct methods are based on an intrinsic property of the glucose molecule and the measurement of this property. The best example of a direct measurement is vibrational spectroscopy as implemented by near-infrared absorption spectroscopy or Raman scattering spectroscopy. A summary of the major methods is provided in Section 12.5. [Pg.334]

Chen J, Jiang J, Gao X, Liu G, Shen G, Yu R (2008) A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy. Chemistry 14(27) 8374—8382... [Pg.73]

In the study of the surface phases of the Pt-Sn system, as well as of other binary systems, a variety of experimental methods are available. Surface spectroscopies based on ion or electron interaction with the surface provide composition information with a depth resolution that can go from a few atomic layers (X-ray photoelectron spectroscopy, XPS and Auger electron spectroscopy, AES) to single atomic layer resolution. The latter can be obtained by low energy ion scattering (LEIS) a method which has been extensively used for the study ot the Pt-Sn system. Since surface spectroscopic methods are rather well known we will not review them in detail here. [Pg.186]

Many of the Cu 100 based surface alloys discussed in this chapter are relatively well characterised in terms of their layerwise compositional profile, geometric structure and thermal stability. However, it is clear that the majority of structural studies performed to date have made the (often necessary) assumption that a single homogeneous structural phase with a somewhat idealised compositional profile is present. In many cases, particularly for adsorbates which exhibit considerable bulk solubility in copper this may be a oversimplification. Future work to investigate the sensitivity of quantitative probes of surface structure and composition such as LEED, ion scattering spectroscopies and photo-electron diffraction to structural heterogeneity will be invaluable. [Pg.358]

Figure 13.4. Electrochemical cells for Raman spectroscopy based on (A) 180° geometry and (B) fiber-optic collection of scattered light. Figure 13.4. Electrochemical cells for Raman spectroscopy based on (A) 180° geometry and (B) fiber-optic collection of scattered light.
Schematic models for the expanded structure of bile acid-phosphatidylcholine mixed micelles are shown in Fig. 2B. The original model was proposed by Small in 1967 (S36). In this model the mixed micelle consisted of a phospholipid bilayer disk surrounded on its perimeter by bile acid molecules, which were oriented with their hydrophilic surhices in contact with aqueous solvent and their hydrophobic sur ces interacting with the hydrocarbon chains of the phosphohpid molecules. This model has recently been revised, based on further studies of mixed micelles using quasi-elastic light scattering spectroscopy (M20). In a new model for the molecular structure of bile acid-phospholipid mixed micelles. Mazer et al. (M20) propose a mixed disk, in which bile acids are found not only on the perimeter of phospholipid bilayers, but also incorporated within their interior in high concentrations (Fig. 2B). The size of these mixed micelles was estimated to be as high as 200 to 400 A in radius in some solutions, and disk-shaped particles in this size range were observed by transmission electron microscopy (M20). Micellar aggregates similar in size and structure to those found in model bile solutions have been demonstrated in dog bile (M22). Schematic models for the expanded structure of bile acid-phosphatidylcholine mixed micelles are shown in Fig. 2B. The original model was proposed by Small in 1967 (S36). In this model the mixed micelle consisted of a phospholipid bilayer disk surrounded on its perimeter by bile acid molecules, which were oriented with their hydrophilic surhices in contact with aqueous solvent and their hydrophobic sur ces interacting with the hydrocarbon chains of the phosphohpid molecules. This model has recently been revised, based on further studies of mixed micelles using quasi-elastic light scattering spectroscopy (M20). In a new model for the molecular structure of bile acid-phospholipid mixed micelles. Mazer et al. (M20) propose a mixed disk, in which bile acids are found not only on the perimeter of phospholipid bilayers, but also incorporated within their interior in high concentrations (Fig. 2B). The size of these mixed micelles was estimated to be as high as 200 to 400 A in radius in some solutions, and disk-shaped particles in this size range were observed by transmission electron microscopy (M20). Micellar aggregates similar in size and structure to those found in model bile solutions have been demonstrated in dog bile (M22).
Also discussed in that section was the information obtained by Zhuravlev, who used mainly classic methods, such as differential thermogravimetry combined with mass spectroscopy and deuterium-exchange. A novel and modern approach for the study of silica surfaces is based on the combined use of computational chemistry and inelastic neutron scattering spectroscopy (43, 44). [Pg.52]


See other pages where Scattering spectroscopy based is mentioned: [Pg.1807]    [Pg.441]    [Pg.134]    [Pg.13]    [Pg.71]    [Pg.314]    [Pg.491]    [Pg.22]    [Pg.135]    [Pg.19]    [Pg.127]    [Pg.127]    [Pg.627]    [Pg.193]    [Pg.277]    [Pg.313]    [Pg.632]    [Pg.56]    [Pg.336]    [Pg.95]    [Pg.276]    [Pg.578]    [Pg.338]    [Pg.262]    [Pg.77]    [Pg.118]    [Pg.310]    [Pg.159]    [Pg.266]    [Pg.284]    [Pg.192]    [Pg.221]    [Pg.1807]    [Pg.348]    [Pg.303]    [Pg.241]    [Pg.173]    [Pg.297]   
See also in sourсe #XX -- [ Pg.441 , Pg.442 , Pg.443 , Pg.444 ]




SEARCH



Spectroscopies based

Spectroscopy scattering

© 2024 chempedia.info