Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Samples, information about

The equilibrium configuration in a liquid crystal sample is strongly influenced by the sample boundaries. The confining surfaces can induce order, disorder, or can align liquid crystal molecules in a given direction. Surface interactions not only have influence on the static properties of a confined liquid crystal, but can also have a strong effect on the director dynamics. By studying temporal fluctuations of the director field in confined samples, information about the surface-liquid crystal interaction can be obtained. [Pg.55]

The critical incident technique was used to sample information about type and frequency of near miss situations. Questionnaires were employed to record physical and personal stress factors at work and the individual assessment of different accident causes. In particular, the following topics were rated by the workers ... [Pg.171]

All extrema within a 3D seismic volume can be represented by two sparse 3D cubes, containing only information about the minimum and maximum events in the seismic data. A vertical trace of the first cube contains the actual maximum or minimum seismic amplitude values along this trace, stored in the vertically closest voxel along the trace. This cube is referred to as the extrema value cube. The second cube, denoted the extrema position cube, contains sub-sample information about the exact location of the extrema, i.e., the vertical correction to the seismic sampling resolution. Both extrema cubes are sparse cubes, with value zero at voxel positions not falling on an extremum. The set of voxels containing extrema data is the same for the two cubes, but contains amplitudes and sub-sample positions respectively. [Pg.90]

Molecular dynamics simulations provide information about the motion of molecules, which facilitates the interpretation of experimental results and allows the statistically meaningful sampling of (thermodynamic) data. [Pg.398]

In Chapter 2, a brief discussion of statistical mechanics was presented. Statistical mechanics provides, in theory, a means for determining physical properties that are associated with not one molecule at one geometry, but rather, a macroscopic sample of the bulk liquid, solid, and so on. This is the net result of the properties of many molecules in many conformations, energy states, and the like. In practice, the difficult part of this process is not the statistical mechanics, but obtaining all the information about possible energy levels, conformations, and so on. Molecular dynamics (MD) and Monte Carlo (MC) simulations are two methods for obtaining this information... [Pg.60]

Nd in samples. Unfortunately, mass spectrometry is not a selective technique. A mass spectrum provides information about the abundance of ions with a given mass. It cannot distinguish, however, between different ions with the same mass. Consequently, the choice of TIMS required developing a procedure for separating the tracer from the aerosol particulates. [Pg.8]

Recording a measurement provides information about both its magnitude and uncertainty. For example, if we weigh a sample on a balance and record its mass as 1.2637 g, we assume that all digits, except the last, are known exactly. We assume that the last digit has an uncertainty of at least 1, giving an absolute uncertainty of ... [Pg.13]

The balanced chemical reaction provides the stoichiometric relationship between the moles of Fe used and the moles of oxalic acid in the sample being analyzed— specifically, one mole of oxalic acid reacts with two moles of Fe. As shown in Example 2.6, the balanced chemical reaction can be used to determine the amount of oxalic acid in a sample, provided that information about the number of moles of Fe is known. [Pg.20]

A process that provides chemical or physical information about the constituents in the sample or the sample itself. [Pg.36]

The first important distinction we will make is among the terms analysis, determination, and measurement. An analysis provides chemical or physical information about a sample. The components of interest in the sample are called analytes, and the remainder of the sample is the matrix. In an analysis we determine the identity, concentration, or properties of the analytes. To make this determination we measure one or more of the analyte s chemical or physical properties. [Pg.36]

Samples collected from the target population using available information about the analyte s distribution within the population. [Pg.184]

A web-site dedicated to sample preparation, which contains useft information about acid digestion and microwave digestion, is found at... [Pg.231]

In a gravimetric analysis a measurement of mass or change in mass provides quantitative information about the amount of analyte in a sample. The most common form of gravimetry uses a precipitation reaction to generate a product whose mass is proportional to the analyte. In many cases the precipitate includes the analyte however, an indirect analysis in which the analyte causes the precipitation of another compound also is possible. Precipitation gravimetric procedures must be carefully controlled to produce precipitates that are easily filterable, free from impurities, and of known stoichiometry. [Pg.266]

In a titrimetric method of analysis the volume of titrant reacting stoichiometrically with the analyte provides quantitative information about the amount of analyte in a sample. The volume of titrant required to achieve this stoichiometric reaction is called the equivalence point. Experimentally we determine the titration s end point using a visual indicator that changes color near the equivalence point. Alternatively, we can locate the end point by recording a titration curve showing the titration reaction s progress as a function of the titrant s volume. In either case, the end point must closely match the equivalence point if a titration is to be accurate. Knowing the shape of a titration... [Pg.357]

In a performance-based approach to quality assurance, a laboratory is free to use its experience to determine the best way to gather and monitor quality assessment data. The quality assessment methods remain the same (duplicate samples, blanks, standards, and spike recoveries) since they provide the necessary information about precision and bias. What the laboratory can control, however, is the frequency with which quality assessment samples are analyzed, and the conditions indicating when an analytical system is no longer in a state of statistical control. Furthermore, a performance-based approach to quality assessment allows a laboratory to determine if an analytical system is in danger of drifting out of statistical control. Corrective measures are then taken before further problems develop. [Pg.714]

This result shows that the square root of the amount by which the ratio M /M exceeds unity equals the standard deviation of the distribution relative to the number average molecular weight. Thus if a distribution is characterized by M = 10,000 and a = 3000, then M /M = 1.09. Alternatively, if M / n then the standard deviation is 71% of the value of M. This shows that reporting the mean and standard deviation of a distribution or the values of and Mw/Mn gives equivalent information about the distribution. We shall see in a moment that the second alternative is more easily accomplished for samples of polymers. First, however, consider the following example in which we apply some of the equations of this section to some numerical data. [Pg.39]

The relaxation and creep experiments that were described in the preceding sections are known as transient experiments. They begin, run their course, and end. A different experimental approach, called a dynamic experiment, involves stresses and strains that vary periodically. Our concern will be with sinusoidal oscillations of frequency v in cycles per second (Hz) or co in radians per second. Remember that there are 2ir radians in a full cycle, so co = 2nv. The reciprocal of CO gives the period of the oscillation and defines the time scale of the experiment. In connection with the relaxation and creep experiments, we observed that the maximum viscoelastic effect was observed when the time scale of the experiment is close to r. At a fixed temperature and for a specific sample, r or the spectrum of r values is fixed. If it does not correspond to the time scale of a transient experiment, we will lose a considerable amount of information about the viscoelastic response of the system. In a dynamic experiment it may... [Pg.173]

Edx is based on the emission of x-rays with energies characteristic of the atom from which they originate in Heu of secondary electron emission. Thus, this technique can be used to provide elemental information about the sample. In the sem, this process is stimulated by the incident primary beam of electrons. As will be discussed below, this process is also the basis of essentially the same technique but performed in an electron spectrometer. When carried out this way, the technique is known as electron microprobe analysis (ema). [Pg.271]

Analysis of Surface Elemental Composition. A very important class of surface analysis methods derives from the desire to understand what elements reside at the surface or in the near-surface region of a material. The most common techniques used for deterrnination of elemental composition are the electron spectroscopies in which electrons or x-rays are used to stimulate either electron or x-ray emission from the atoms in the surface (or near-surface region) of the sample. These electrons or x-rays are emitted with energies characteristic of the energy levels of the atoms from which they came, and therefore, contain elemental information about the surface. Only the most important electron spectroscopies will be discussed here, although an array of techniques based on either the excitation of surfaces with or the collection of electrons from the surface have been developed for the elucidation of specific information about surfaces and interfaces. [Pg.274]

One other very important attribute of photoemitted electrons is the dependence of their kinetic energy on chemical environment of the atom from which they originate. This feature of the photoemission process is called the chemical shift of and is the basis for chemical information about the sample. In fact, this feature of the xps experiment, first observed by Siegbahn in 1958 for a copper oxide ovedayer on a copper surface, led to his original nomenclature for this technique of electron spectroscopy for chemical analysis or esca. [Pg.277]

Discriminant Sensory Analysis. Discriminant sensory analysis, ie, difference testing, is used to determine if a difference can be detected in the flavor of two or more samples by a panel of subjects. These differences may be quantitative, ie, a magnitude can be assigned to the differences but the nature of the difference is not revealed. These procedures yield much less information about the flavor of a food than descriptive analyses, yet are extremely useful eg, a manufacturer might want to substitute one component of a food product with another safer or less expensive one without changing the flavor in any way. Several formulations can be attempted until one is found with flavor characteristics that caimot be discriminated from the original or standard sample. [Pg.3]


See other pages where Samples, information about is mentioned: [Pg.289]    [Pg.81]    [Pg.525]    [Pg.448]    [Pg.712]    [Pg.289]    [Pg.81]    [Pg.525]    [Pg.448]    [Pg.712]    [Pg.23]    [Pg.105]    [Pg.1019]    [Pg.59]    [Pg.174]    [Pg.321]    [Pg.1293]    [Pg.18]    [Pg.87]    [Pg.184]    [Pg.194]    [Pg.622]    [Pg.643]    [Pg.769]    [Pg.774]    [Pg.29]    [Pg.160]    [Pg.41]    [Pg.177]    [Pg.516]    [Pg.333]    [Pg.411]    [Pg.214]    [Pg.481]   
See also in sourсe #XX -- [ Pg.15 , Pg.16 ]




SEARCH



Sample information

© 2024 chempedia.info