Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample Preparation Pretreatment

The UV method has been described as a simple and reliable procedure for the determination of sulphide in wastewater. Compared with some reference methods, it is less sensitive but do not need any sample preparation (pretreatment, filtration, etc.) and is unaffected by interferences (salinity, suspended matter, organics compounds, etc.). [Pg.131]

Microfluidic-based biosensors have advanced greatly in various fields over the last few decades [8, 27]. The fundamental concept underlying the microfluidic biosensors that have been reported is to integrate the analytical functions necessary for biochemical analysis onto a single chip, including sample preparation, pretreatment, detection, and sometimes molecular separation or sorting. [Pg.120]

Pooled into this section are presampling, sampling, sample storage and sample preparation (pretreatment). [Pg.1532]

State-of-the-art TOF-SIMS instruments feature surface sensitivities well below one ppm of a mono layer, mass resolutions well above 10,000, mass accuracies in the ppm range, and lateral and depth resolutions below 100 nm and 1 nm, respectively. They can be applied to a wide variety of materials, all kinds of sample geometries, and to both conductors and insulators without requiring any sample preparation or pretreatment. TOF-SIMS combines high lateral and depth resolution with the extreme sensitivity and variety of information supplied by mass spectrometry (all elements, isotopes, molecules). This combination makes TOF-SIMS a unique technique for surface and thin film analysis, supplying information which is inaccessible by any other surface analytical technique, for example EDX, AES, or XPS. [Pg.33]

In order to investigate the relationship between the surface area of skeletal copper and activity, the same sample of catalyst was tested in four successive runs. Rate constants was compared with that of another sample prepared in the same way but pretreated in 6.2 M NaOH at 473 K before use. Figure 4 shows that the first order rate constants, calculated so as to take into account the mass of catalyst relative to the volume of solution, decreased in the first three cycles but then stabilised. The surface areas, measured on small samples taken after reaction, mirrored this pattern. The rate constant, and the surface area, for the pretreated catalyst was similar to those obtained in cycles 3 and 4. It is apparent that activity and surface area are closely related for the unpromoted skeletal copper catalyst and that the pretreatment in NaOH at 473 K is approximately equivalent to three repeated reactions in terms of stabilising activity and surface area. [Pg.30]

Chemical sample preparation. The most important chemical and physicochemical procedures of sample pretreatment are ... [Pg.51]

Direct injection of pretreated biological samples (also called online sample cleanup) greatly simplified sample preparation for LC/MS/MS analysis. The normal process involves sample aliquot steps, internal standard addition, and centrifugation. Compared to traditional off-line LLE and SPE sample preparation procedures, online methods are easier and faster. Two types of online SPE columns are commercially available. One is the restricted access media (RAM) column. The other is the turbulent flow chromatography (TFC) column. [Pg.77]

Due to its simplicity and wide applicability, PPT is important for sample pretreatment in early drug discovery when generic extraction of mixtures of candidates is more important than sensitivity. As a generic technique, PPT is attractive for high-throughput bioanalysis because it offers fast sample preparation and easy automation and requires minimal manual labor. [Pg.324]

The present paper focuses on the interactions between iron and titania for samples prepared via the thermal decomposition of iron pentacarbonyl. (The results of ammonia synthesis studies over these samples have been reported elsewhere (4).) Since it has been reported that standard impregnation techniques cannot be used to prepare highly dispersed iron on titania (4), the use of iron carbonyl decomposition provides a potentially important catalyst preparation route. Studies of the decomposition process as a function of temperature are pertinent to the genesis of such Fe/Ti02 catalysts. For example, these studies are necessary to determine the state and dispersion of iron after the various activation or pretreatment steps. Moreover, such studies are required to understand the catalytic and adsorptive properties of these materials after partial decomposition, complete decarbonylation or hydrogen reduction. In short, Mossbauer spectroscopy was used in this study to monitor the state of iron in catalysts prepared by the decomposition of iron carbonyl. Complementary information about the amount of carbon monoxide associated with iron was provided by volumetric measurements. [Pg.10]

TRXF was used to determine the trace elements in samples of lecithin, insulin, procaine, and tryptophan in an attempt to develop elemental fingerprints that could be used to determine the origin of the sample [80]. It was reported that through the use of matrix-independent sample preparation and an internal standard, one could use TXRF to facilitate characterization of the samples without the need for extensive pretreatment. In another work, a study was made of the capability of TXRF for the determination of trace elements in pharmaceutical substances with and without preconcentration [81]. [Pg.228]

With the application of FIA in the mixture analytical mode for the analysis of environmental samples and after a marginal sample pretreatment by SPE, matrix effects are a high probability. But, as cited previously [27—31], matrix effects were not only observed with FIA but also in LC-MS and MS—MS modes. Advice to overcome these problems by, e.g. an improved sample preparation, dilution of the analyte solution, application of stable isotopic modification of LC conditions [29] or even application of two-dimensional LC separations [27], postcolumn standard addition [29], addition of additives into the mobile phase (e.g. propionic acid, ammonium formate) [34,35] or even matrix compounds [32] were proposed and discussed. [Pg.180]

Regardless of the pretreatment method, simple manipulations in sample preparation remain one of the most labor-intensive areas of analytical work [491]. [Pg.68]

Fort he determination of preservatives and sweeteners in soft drinks or fruit juices LC analysis with UV detection is widely used. The sample pretreatment, prior to LC analysis, often consists only of degassing, filtration and dilution of the Uqirid [2]. Sometimes a Uqirid-Uqitid extraction, suitable not only for soft drinks but also for more complex matrices, is appUed [3]. Chemometric methods appUed to overlapped spectra offer the advantage of minimizing or eliminating sample preparation by allowing to simirltaneoirsly determining one or more analytes in relatively complex matrices. [Pg.300]

The most common method for preparing samples for pretreatment and subsequent measurement of IR spectra is the self-supporting pellet technique. In this... [Pg.119]

SOLVENT EXTRACTION IN SAMPLE PREPARATION AND PRETREATMENT STEPS... [Pg.560]

In sample preparation or sample pretreatment steps there are a number of important operations that may include dissolution of the sample, transformation of the elements into specific inorganic forms, conversion of the... [Pg.560]

The majority of commercial developments which relate to the automation of GC and HPLC pay little attention to sample preparation. There are few examples where pretreatment is not required. A fully automated system was developed by Stockwell and Sawyer [23] for the determination of the ethanol content of tinctures and essences to estimate the tax payable on them. An instrument was designed and patented which coupled the sample pre-treatment modules, based on conventional AutoAnalyzer modules, to a GC incorporating data-processing facihties. A unique sample-injection interface is used to transfer samples from the manifold onto the GC column. The pretreated samples are directed to the interface vessel hy a simple hi directional valve. An ahquot (of the order of 1 ml) can then he injected on to the GC column through the capillary tube using a time-over pressure system. [Pg.114]

In the separation of biomolecules, sample preparation almost always involves the use of one or more pretreatment techniques. With high-performance liquid chromatography (HPLC), no one sample preparation technique can be appHed to all biological samples. Several techiques may be used to prepare the sample for injection. For example, complex samples require some form of preffactionation before analysis, samples that are too dilute for detection require concentration before analysis, samples in an inappropriate or incompatible solvent require buffer exchange before analysis, and samples that contain particulates require filtration before injection into the analytical instrument. [Pg.118]

Two new ways of automating sample preparation have been commercially exploited firstly the infra-red reflectance techniques, which avoid much of the sample pretreatment required for conventional analysis, and, secondly, robotics, to fully automate or mechanize manual techniques. [Pg.136]


See other pages where Sample Preparation Pretreatment is mentioned: [Pg.560]    [Pg.561]    [Pg.91]    [Pg.1527]    [Pg.1532]    [Pg.1534]    [Pg.560]    [Pg.561]    [Pg.91]    [Pg.1527]    [Pg.1532]    [Pg.1534]    [Pg.341]    [Pg.267]    [Pg.267]    [Pg.33]    [Pg.413]    [Pg.21]    [Pg.194]    [Pg.351]    [Pg.674]    [Pg.210]    [Pg.216]    [Pg.27]    [Pg.29]    [Pg.73]    [Pg.456]    [Pg.266]    [Pg.331]    [Pg.113]    [Pg.523]    [Pg.585]    [Pg.183]    [Pg.103]   


SEARCH



Sample pretreatment

© 2024 chempedia.info